2.2 Біртекті дифференциалдық теңдеулер
Анықтама. f(x, y) функциясы өзінің х және у аргументтеріне қатысты n-өлшемді біртекті делінеді, егер кез келген t параметрдің (нөлден өзге) мәні үшін келесі тепе-теңдік орындалатын болса:
Мысал. Функция біртекті бола ма 
Сонымен f(x, y) функциясы 3-ші ретті біртекті болады.
Анықтама. Егер түріндегі дифференциалдық теңдеудің оң жағы f(x, y) функциясы өзінің х және у аргументтеріне қатысты нөлдік өлшемді біртекті функция болса, онда теңдеу біртекті делінеді.
Егер P(x, y) және Q(x, y) функциялары – бірдей өлшемді біртекті функциялар болса, онда теңдеуі біртекті болады.
Анықтама. түріндегі теңдеу біртекті дифференциалдық теңдеу деп аталады.
Мұндай теңдеуді шешу үшін алмастыруын жасап айнымалылары ажыратылған дифференциалдық теңдеулерге келтіреміз.
Интегралды таба отырып, u функциясының орнына х және у арқылы өрнектелген мәнін алмастырып, біртекті теңдеудің жалпы шешімін аламыз.
Мысал 1: - біртекті дифференциалдық теңдеуді шеш.
Мысал 2:
Мысал 3:
Достарыңызбен бөлісу: |