(Бернулли әдісін) қолданамыз, яғни шешімді белгісіз екі функцияның көбейтіндісі түрінде іздейміз. Мұнда, туындыны өрнегімен алмастырамыз.
Мысал: А(а;а) нүктесі арқылы өтетін у=у(х) қисығы үшін келесі қасиет орындалсын: егер қисықтың кез келген М(х;у) нүктесінде Оу осін С нүктесінде қиятындай жанама жүргізсе, онда ОСМВ трапециясының ауданы тұрақты және а2-қа тең. Аталған қисықтың теңдеуін жаз.
Шешуі: Sтрап= екені белгілі, мұндағы MB=y; OB=x;
OC=BM-DM=BM-CDtgDCM=y-xy/ болғандықтан, трапеция ауданының формуласынан:
а2=х(у+у-ху/) немесе
- сызықтық біртекті емес дифференциалдық теңдеу аламыз.
Оның шешімін Бернулли әдісімен табайық, яғни алмастыруын жасайық. Теңдеуге апарып қойсақ:
1)
2)
3) - сызықтық біртекті емес дифференциалдық теңдеудің жалпы шешімі, у(а)=а болғандықтан:
- ізделінді қисықтың теңдеуі.
Достарыңызбен бөлісу: |