Диплом жұмыс Тақырыбы: Бүтін сандар жиынында теңдеулерді шешу. Орындаған: Нысанова Эльмира


Үш белгісізі бар екінші дәрежелі теңдеулерді шешуге арналған мысалдар



жүктеу 2,18 Mb.
бет6/26
Дата24.05.2023
өлшемі2,18 Mb.
#42757
түріДиплом
1   2   3   4   5   6   7   8   9   ...   26
Дип.-Бүтін-сандар-жиынында-теңдеулерді-шешу

1.4. Үш белгісізі бар екінші дәрежелі теңдеулерді шешуге арналған мысалдар.

1 – мысал. x2 + y2 = z2 (1) теңдеуі берілсін.


Бұл есептің геометриялық шешімі катеттері х, у гипотенузасы z бүтін сандар болатын барлық тік бұрышты үшбұрыштарды табу. Мұндағы х, у сандарының ең үлкен ортақ бөлімін d арқылы белгілейік: d = (х, у), сонда
x = x1d, y = y1d
және (1) теңдеу мына түрге келеді:
x1 2 d 2 + y1 2 d 2 = z 2

Бұл теңдеуден z 2 санының d 2 санына бөлінетіні көрініп тұр, демек z = z1 d.


x1 2 d 2 + y1 2 d 2 = z12 d 2
Теңдіктің екі жағын да d 2 санына бөліп жіберсек,
x1 2 + y1 2 = z12
теңдеуін аламыз. Біздің соңғы теңдеуіміз бастапқы теңдеуге келеді, бірақ х1 және у1 сандарының бірден басқа ортақ бөлгіші жоқ. Сондықтан (1) теңдеуді шешкенде x, y өзара жай сандар деген шешіммен шектелуге болады. Сонда (х, у) = 1 болсын, демек, х немесе у мәндерінің ең болмағанда біреуін тақ деуге болады.Теңдеудің оң жағына y2 белгісізін өткізейік:
x2 = z2 - y2 , x2 =(z+у)(z–у), (2)
d1 = (z+у, z -у) болсын, сонда
z+у = а d1, z–у = bd1, (3)
мұндағы a, b - өзара жай сандар. Ал (3) теңдіктің мәндерін (2) – теңдеуге қойсақ:
x2 = a b d12,
a, b сандарының ортақ бөлгіші болмағандықтан, бұл теңдік a, b толық квадрат болғанда ғана орындалады. Сондықтан біз a = u2, b = v2 деп белгілейміз. Сонда
x2 = u2 v2 d12 және x = u v d1 (4)
Енді (3) теңдіктен y және z мәндерін табайық:
2z = ad1 + bd1 = u2 d1 + v2 d1, (5)
2y = ad1 - bd1 = u2 d1 - v2 d1, (6)
х тақ болғандықтан u, v және d1 сандарын да тақ деп алайық. d1 = 1 болады, себебі: x = u v d1 және теңдіктерінен х және y сандарының ортақ бөлгіші d1 ≠ 1 десек, онда олардың жай сан екеніне қарсы келеміз. Мұндағы u және v өзара жай a және b сандарымен байланысты, сондықтан u және v өзара жай сандар және (3) теңдіктен b < a екендігі шығады, демек, v < u. Сонда 4 – 6 теңдіктеріне d1 = 1 мәнін қойсақ, мына формулаларды аламыз:
x = u v, , , (7)
Мұндағы u және v өзара жай тақ сандар және v < u (7) формуладағы бастапқы u, v мәндері көбіне жиі кездесетін мына теңдіктерді құрайды:
32 + 42 = 52 (v =1, u = 3),
52 + 122 = 132 (v =1, u = 5),
152 + 82 = 172 (v =3, u = 5).
(7) формула (1) теңдеудің x, y, z сандарының ортақ бөлгіші болмағандығы шешімдерін береді. Ал (1) теңдеудің қалған шешімдері (7) формуланы қамтитын шешімдерді кез – келген ортақ көбейткіш d санына көбейткеннен шығады.
2 – мысал. x2 + 2y2 = z2 (8) теңдеуінің барлық шешімдерін табайық.
x, y, z (8) теңдеудің шешімдері болып, бірден басқа өзара ортақ бөлгіші болмаса, олар екеуара жай болады. Шындығында, егер х және y жай р санына бөлінсе, р > 2, онда

теңдігінің сол бөлігі бүтін сан және z р санына бөлінетіндігі шығады. Ал х және z немесе y және z р санына бөлінсе де солай болады.
x, y, z сандарының ортақ бөлгіші 1 болу үшін, х тақ сан болуы керек. Шындығында, х жұп болса, онда (8) теңдеудің сол жағы жұп сан болады және z саны да жұп болады. Бірақ x2 және z2 4 – ке бөлінеді. Демек, 2y2 саны да 4 – ке бөлінуі керек, басқаша айтқанда, у саны да жұп болуы керек. Сонымен, х тақ болатындықтан, z саны да тақ болуы керек. Ал x2 теңдеудің оң жағына өтсе
2y2 = z2 - x2 =(z+x)(z–x),
теңдігін аламыз. Бірақ (z+x) және (z–x) сандарының ең үлкен ортақ бөлгіші d болсын. Сонда z+x = к d, z–x = ld, мундағы к, l - бүтін сандар. Екі теңдікті қоссақ және азайтсақ, мына теңдіктерді аламыз:
2 z = d(к+l), 2x = d(к-l),
х және z тақ және өзара жай сандар, сондықтан және 2z сандарының ең үлкен ортақ бөлгіші 2 болады, яғни d = 2.
Осынымен, немесе тақ болады. Сондықтан z+x және өзара жай, немесе және z–x өзара жай сандар.
Бірінші жағдайда, теңдігінен
z+x = n2, z–x = 2m2 екендігі шығады.
Екінші жағдайда, теңдігінен z+x =2m2, z –x = n2 шығады, мұндағы m және n бүтін сандар, m - тақ сан және n > 0, m > 0. Ал х және z белгісіздеріне қатысты жүйені шешсек, у мәнін табамыз:
,
немесе
.
Екі формуланы біріктіріп, x, y, z шешімдерін былай жазуға болады:

Мұндағы m - тақ сан, x, z - бүтін сандар болуы үшін, n жұп болуы қажет.
n = 2b, m = a десек, (8) теңдеудің барлық шешімдерін беретін соңғы формуланы аламыз:
x = ± (a2 – 2b2), у = 2ab, z2 = a2 + 2b2, (8/)
мұндағы a, b өзара жай оң сандар және а тақ сан, сонымен қоса a, b мәндері х оң болатындай таңдалып алынады. (8/) формуласы (8) теңдеуінің x, y, z үшеуі де өзара жай оң сандар болғандығы барлық шешімдерін береді.


жүктеу 2,18 Mb.

Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   26




©g.engime.org 2024
әкімшілігінің қараңыз

    Басты бет
рсетілетін қызмет
халықаралық қаржы
Астана халықаралық
қызмет регламенті
бекіту туралы
туралы ережені
орталығы туралы
субсидиялау мемлекеттік
кеңес туралы
ніндегі кеңес
орталығын басқару
қаржы орталығын
қаржы орталығы
құрамын бекіту
неркәсіптік кешен
міндетті құпия
болуына ерікті
тексерілу мемлекеттік
медициналық тексерілу
құпия медициналық
ерікті анонимді
Бастауыш тәлім
қатысуға жолдамалар
қызметшілері арасындағы
академиялық демалыс
алушыларға академиялық
білім алушыларға
ұйымдарында білім
туралы хабарландыру
конкурс туралы
мемлекеттік қызметшілері
мемлекеттік әкімшілік
органдардың мемлекеттік
мемлекеттік органдардың
барлық мемлекеттік
арналған барлық
орналасуға арналған
лауазымына орналасуға
әкімшілік лауазымына
инфекцияның болуына
жәрдемдесудің белсенді
шараларына қатысуға
саласындағы дайындаушы
ленген қосылған
шегінде бюджетке
салығы шегінде
есептелген қосылған
ұйымдарға есептелген
дайындаушы ұйымдарға
кешен саласындағы
сомасын субсидиялау