Диплом жұмыс Тақырыбы: Бүтін сандар жиынында теңдеулерді шешу. Орындаған: Нысанова Эльмира


Екі белгісізі бар бірінші дәрежелі теңдеулер



жүктеу 2,18 Mb.
бет4/26
Дата24.05.2023
өлшемі2,18 Mb.
#42757
түріДиплом
1   2   3   4   5   6   7   8   9   ...   26
Дип.-Бүтін-сандар-жиынында-теңдеулерді-шешу

1.3 Екі белгісізі бар бірінші дәрежелі теңдеулер.
Екі белгісізі бар бірінші дәрежелі теңдеуді қарастырайық:
ax + by + c = 0 (1)
Мұндағы а, b нөлден өзгеше бүтін сандар, ал с – кез – келген бүтін сан. Ал а, b коэффициенттерінің бірден басқа ортақ бөлгіші жоқ деп ұйғарайық. Шындығында, бұл коэффицентердің ең үлкен ортақ бөлгіш бірден өзгеше d = (a, b) десек, a = a1d , b = b1d теңдеулері орынды болады. Сонда (1) теңдеу мына түрге келеді: (a1x + b1y) d = 0. (2)
с саны d санына бөлінсе ғана, бұл теңдеудің бүтін шешімдері болады. Бұл жағдайда d = (a, b) ≠ 1; (2) теңдеуді d санына бөлсек, мына теңдеуді аламыз: a1x + b1y + c1 = 0 c1 = ,
мұндағы a1 және b1 өзара жай сандар. Ең алдымен с = 0 болғандағы жағдайды қарастырайық. Сонда (1) теңдеу мына түрге келеді:
ax + by = 0 (1/ )
Бұл теңдеуден х белгісізін табайық: х = , х бүтін мән қабылдайды, сонда тек сонда ғана, егер у а санына қалдықсыз бөлінсе. Ал ондай у белгісізінің бүтін мәнін былай жазуға болады:
у = аt,
мұндағы t – кез – келген бүтін сан (t = 0, 1, 2, … ) у мәнін (1/ ) теңдеуіне қойсақ, онда
х = ,
біз (1/ ) теңдеуінің барлық бүтін шешімдерін қамтитын формулалар аламыз:
х = - bt, y = at (t = 0, 1, 2, … )
Енді с ≠ 0 болған жадайды қарастырамыз.
(1) теңдеудің барлық бүтін шешімдерін табу үшін, оның тек қана бір бүтін шешімін табу жеткілікті, сондай – ақ
a0x + b0y + c = 0
теңдеуі үшін х0, у0 бүтін сандарын табу керек.


Теорема 1 a және b өзара жай сандар және [x0, y0] ax + by + c = 0 теңдеуінің кез – келген бүтін шешімі болсын, сонда мына формулалар:
x = x0 – bt, y = y0 + at (3)
t = 0, 1, 2, … болғандағы теңдеудің барлық шешімдерін берін береді.
Дәлелдеу: [x, y] - (1) теңдеудің кез – келген шешімі болсын. Сонда ax + by + c = 0 және ax0 + by0 + c = 0 теңдіктерінен мынау шығады:
ax - ax0 + by - b0 = 0, y – y0 = ,
мұндағы у – у0 бүтін сан және a, b өзара жай сандар болғандықтан, х0 –х
b санына бүтіндей бөлінуі керек. Сонда х0 –х мына түрге келеді:
х – х0 = bt,
мұндағы t бүтін сан, х0 –х мәнін алдыңғы теңдікке алып барып қойсақ:
y – y0 = .
сонда x = x0 – bt, y = y0 + at формулаларын аламыз.

жүктеу 2,18 Mb.

Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   26




©g.engime.org 2024
әкімшілігінің қараңыз

    Басты бет
рсетілетін қызмет
халықаралық қаржы
Астана халықаралық
қызмет регламенті
бекіту туралы
туралы ережені
орталығы туралы
субсидиялау мемлекеттік
кеңес туралы
ніндегі кеңес
орталығын басқару
қаржы орталығын
қаржы орталығы
құрамын бекіту
неркәсіптік кешен
міндетті құпия
болуына ерікті
тексерілу мемлекеттік
медициналық тексерілу
құпия медициналық
ерікті анонимді
Бастауыш тәлім
қатысуға жолдамалар
қызметшілері арасындағы
академиялық демалыс
алушыларға академиялық
білім алушыларға
ұйымдарында білім
туралы хабарландыру
конкурс туралы
мемлекеттік қызметшілері
мемлекеттік әкімшілік
органдардың мемлекеттік
мемлекеттік органдардың
барлық мемлекеттік
арналған барлық
орналасуға арналған
лауазымына орналасуға
әкімшілік лауазымына
инфекцияның болуына
жәрдемдесудің белсенді
шараларына қатысуға
саласындағы дайындаушы
ленген қосылған
шегінде бюджетке
салығы шегінде
есептелген қосылған
ұйымдарға есептелген
дайындаушы ұйымдарға
кешен саласындағы
сомасын субсидиялау