II. Егер алдыңғы есептің шартын біраз өзгертсек, біз басқа түрдегі тосын жағдайға тап боламыз.
Атап айтқанда, ондық цифр бірлік цифрдан 4-ке емес, 3-ке кем деп есептейміз, ал есептің өзге шартын бұрынғысын-ша қалдырамыз. Бұл қандай сан?
Теңдеу құрамыз. Егер ондық цифрды х арқылы белгілесек, онда бірлік цифр х + 3 өрнегі арқылы өрнектеледі. Есепті алгебра тіліне аударып, мына теңдеуді шығарып аламыз:
10(х + 3) + х− [10х + (х+3)] = 27.
Енді ықшамдасақ, мына теңдік шығады:
27 = 27.
Бұл теңдік сөзсіз тура, бірақ ол х-тің мәні туралы ештеңе білдірмейді. Бұл есептің талабын қанағаттандыратын сан жоқ деген сез бе?
Керісінше, бұл біз құрастырған теңдеудің теңбе-теңдік екенін білдіреді, яғни ол теңдеу х белгісіздің кез келген мәнінде тура. Шынында, бірлік цифры ондық цифрынан 3-ке артық болатын кез келген екі таңбалы санның осы есепте көрсетілгендей қасиеті бар екеніне оп-оңай көз жеткізуге
14 + 27 = 41, 47 + 27 = 74,
25 + 27 = 52, 58 + 27 = 85,
36+27 = 63, 69 + 27=96.
III. Төмендегідей қасиеттері бар үш таңбалы санды табыңдар:
1) ондық цифры 7;
2) жүздік цифры бірлік цифрынан 4-ке кем;
3) егер осы санның цифрлары кері ретпен орналастырылса, онда жаңа сан ізделіп отырған саннан 396-ға артық болады.
Бірлік цифрын х арқыльг белгілеп, теңдеу құрамыз:
100х + 70 + х−4−[100 (х−4) + 70 + х] = 396.
Бұл теңдеуді ықшамдағаннан соң, мынадай теңдік шығады:
396 = 396.
Оқырмандар бұған қалай түсінік беруді бұрыннан біледі. Бұл бірінші цифры үшінші цифрынан 4-ке кем кез келген үш таңбалы сан цифрларын кері ретпен орналастырғанда 396-ға артатынын білдіреді.
Біз осы кезге дейін аздыкөпті жасанды, кітаптық сипаты бар есептерді қарастырдық; сондағы мақсатымыз — теңдеулер құру мен шешуге дағдыландыру. Енді теория жүзінде түсінік алған соң енді өндіріс саласынан, тұрмыстан, әскери істен, спорттан алынған практикалық есептермен айналысамыз.
ЕСЕП. «Шаштаразда»
Алгебра шаштаразға керек бола ма? Мұндай жағдай кездеседі екен. Бұған менің көзім жетті, бір күні шаштаразда маған бір шебер тосын өтінішпен үн қатты:
— Біз шеше алмаған есепті шешуге көмектеспес пе екенсіз?
— Осы есепті шеше алмағандықтан қанша ерітіндіні бүлдіріп алдық десеңізші!— деп қостады екіншісі.
— Ол қандай есеп?— деп, мен мән-жайды сұрадым.
— Бізде сутегі асқын тотығының 30-проценттік және 3-проценттік екі ерітіндісі бар. Бұларды 12-проценттік ерітінді шығатындай етіп араластыру керек. Осының дұрыс пропорциясын таба алатын емеспіз...
Маған бір парақ қағаз берді, қажетті пропорция табылды.
Ол пропорция өте қарапайым екен. Атап айтқанда, ол қандай болды екен?
ШЕШУІ
Есепті арифметикалық әдіспен де шешуге болады, бірақ алгебра тілі бұл жерде мақсатқа оп-оңай әрі тез жеткізеді. 12-проценттік қоспа жасау үшін 3-прхоценттік ерітіндіден х грамм, ал 30-проценттік ерітіндіден у грамм алу керек болсын. Сонда бірінші пропорцияда таза сутегінің асқын тотығы 0,03х грамм, екіншіде 0,3у грамм болады, ал барлығы мынаған тең:
0,03х + 0,3y
Осының нәтижесінде (х + у) 'грамм ерітінді Шығады, мұндағы таза сутегінің асқын тотығы 0,12 {х + у) болуы керек.
Мынадай теңдеу шығады: 0,03х + 0,3y = 0,12(х + y).
Осы теңдеуден х = 2у болатынын табамыз, яғни 3-проценттік ерітіндіні, 30-проценттік ерітіндіге қарағанда, екі есе артық алу керек.
ЕСЕ П. «Трамвай мен жаяу адам»
Мен трамвай жолын жағалап жүріп келе жатып, әрбір 12 минут сайын мені бір трамвай қуып жететінін, ал әрбір 4 минут сайын маған бір трамвай қарсы кезігетінін байқадым. Менің де, трамвайдың да жүрісі бір қалыпты.
Трамвай вагондары өздерінің ақырғы пункттерінен бірінен соң бірі қанша минуттан соң шығады?
ШЕШУІ: Егер вагондар өздерінің ақырғы пункттерінен әрбір х минуттан соң шығатын болса, онда- менің трамвайдың бірімен жолығатын жеріме, х минуттан соң келесі трамвай келеді деген сөз. Егер ол мені қуып жететін болса, онда ол менің 12 минутта жүріп үлгеретін жолымды, қалған 12 - х минутта жүріп өтуі керек . Демек, менің 1 минутта жүретін жолымды трамвай минутта жүреді.
Егер де трамвай маған қарама-қарсы келе жатқан болса, онда ол менің алдыңғы трамвай жолыққаннан кейін 4 минут өткен соң кездестіреді, ал қалған (х—4) минутта ол менің осы 4 минутта жүріп үлгерген жолымды жүріп өтеді. Сондықтан менің 1 минутта жүретін жолымды трамвай
минутта жүреді..
Мынадай теңдеу шығады:
Бұдан х = 6. Вагондар ақырғы пункттен әрбір 6 минут сайын шығып отырады.
Есептің төмендегідей (дұрысында арифметикалық) шешуін ұсынуға болады. Бірінен соң бірі жүретін екі трамвайдың ара қашықтығын а арқылы белгілейік. Сонда мені мен маған қарсы келе жатқан трамвайдың ара қашықтығы бір минутта -ға кемиді (себебі қазір ғана кеткен трамвай мен келесі трамвайдың арақашықтығы а -ға тең, оны біз 4 минутта жүріп өтеміз). Егер де трамвай мені артымнан қуып жететін болса, онда біздің ара қашықтығымыз әр минут сайын –ға кемиді. Енді, мен бір минут алға карай, ал сонан соң кері қайтып бір минут жүрдім деп жориын (яғни, бастапқы орынға қайтып келем). Сонда алғашында маған қарсы келе жатқан трамвай мен менің аралығым бірінші минутта -ға, ал екшші минутта (бұл трамвай мені қуып жеткенде)
-ға кемитін болады.Осының нәтижесінде 2 минутта біздің ара қашықтығымыз
-ға кемиді. Егер де мен орнымнан тапжылмай тұра берген болсам да, дәл осылай болар еді, себебі мен бәрібір кері қайтып келдім ғой. Сонымен, егер де мен орнымнан қозғалмасам, онда бір минутта (екі минутта емес) трамвай маған -ға жақындай
түседі, ал барлық а қашықтықты ол 6 минутта жүріп өтеді. Бұл орнынан қозғалмай тұрған бақылаушының қасынан трамвай 6 минут сайын өтіп тұрады деген сөз.
Достарыңызбен бөлісу: |