Шешуі: Қыңырдың қазіргі жасын -х десек, есеп шарты бойынша:
3(х+3) – 3(х-3) = 3х+9 – 3х + 9 =18
Тексеруі:
18+3=21;
18 – 3=15;
21 х 3 – 3 х 15 = 63 – 45 =18.
Жауабы: Қыңырдың жасы. 18-де.
Мерген.
Мерген нысанаға 10 рет атып, 90 ұпай жинады. Оның төртеуін ондыққа, сегіздікке және жетілікке тигізді. Ол тоғыздыққа нешеуін, сегіздікке нешеуін, жетілікке нешеуін тигізді?
Аң таппаған,
Атынан көреді.
Ата алмаған
Мылтығынан көреді.
Шешуі: 7 х 1 + 8 х 2 + 9 х 3 + 10 х 4 =90 болғандықтан, жетілікке біреуін, сегіздікке екеуін, тоғыздыққа үшеуін, ондыққа төртеуін тигізгені
Тоғыз тарау иірімдерінің бүге-шігесін меңгеріп, зерде тезіне салып, керегенің көгіндей атқаратын қызметін түсіну, көген түймесін табу-есепті шешудің алтын балдағы. Оны көп, із кессең табасың. Міне ,бұл қазақ халқының ауыз екі тараған есебінің артықшылығы. Қазақ халқының математикалық білімінің тамыры терең. Ол қазіргі тілмен алғанда санаудың әртүрлі жүйесін, мәселен үштік, ондық, тоғыздық пайдаланған. Тоғыздық жүйе ешбір жалықта кездеспейді. Қазақтың мұра есебі – Симплекс әдісіне келсе, мүшел есебі, зекет есебі, бітір есебі, тоғыз құмалақ есебі - өз алдына бір төбе. Қазақтың қара есебі өмір қажеттілігінен туындаған. Қазақ халқының тәрбиесінің математикалық астары да түрліше.
Олар: 1. Жұмбақ есеп
2. Өлең есеп
3. Ертегі есеп
Ғасырлар бойы даналығымен, өміршеңдігімен дәлелденген халықтық есептер үлгілері- тәрбиенің қайнар көзі болып табылады. Қанша уақыт өтсе де маңызын жоймаған халықтың ұлттық мұрасын тәлім-тәрбиенің түп қазығына айналдыру – біздің де асыл борышымыз. Сондықтан халқымыздың ауыз әдебиетінде, ертегілерде, шешендік тапқыр сөздерінде, салт-дәстүрінде оқушылардың ақыл-ой зердесін тәрбиелеуде ұлттық мазмұнды есептер шығарудың маңызы зор.
2.3. Ойын-сауық кешінде
«Ойдағы санды табу өнері»
Сендердің әрқайсыларың ойдағы санды табу «фокусымен» кездескен боларсыңдар. Фокусшы әдетте мынадай іспетті әрекет жасауды ұсынады; бір сан ойла, 2-ні қос, 3-ке көбейт, 5-ті азайт, ойлаған санды азайт т. с. .с.-барлығы бес, кейде ондаған амал орындатады. Сонан соң фокусшы сенде шыққан нәтижені сұрап біледі де, сол сәтте сен ойлаған санды атайды.
«Фокустың» сыры, әрине, ап-айқын, оның негізіне теңдеулер алынған.
Мысалы, фокусшы саған төмендегі таблицаны сол жақ бағанындағы амалдар алгоритмін орындауды ұсынған болсын дейік:
Сан ойла
|
х
|
2-ні қос,
|
х + 2
|
нәтижені 3-ке көбейт,
|
3х+6
|
5-ті азайт,
|
3х+1
|
ойланған санды азайт,
|
2х+1
|
2-ге көбейт,
|
4х+2
|
1-ді азайт
|
4х+1
| Сонан соң фокусшы сенен ең соңғы шыққан нәтижені айтуды өтінеді, оны сен айтқан соң, сол сәтте ойланған санды атайды. Ол мұны қалай тапты?
Мұны түсіну үшін таблицаның оң жағындағы бағанға қараңдар, онда фокусшының нұсқаулары алгебра тіліне аударылған.. Осы бағаннан, егер сен қандай да бір х санын ойлаған болсаң онда барлық амалдарды орындаған соң сенің жауабыңда 4х+1 шығуы керек. Осыны біле отырып, ойланған санды «табу» қиын емес.
Мысалы, сен фокусшыға 33 шыққанын айттың дейік. Сол кезде фокусшы ойша 4х+1 = 33 теңдеуін тез шешеді де, х = 8 екенін табады. Екінші сөзбен айтқаңда, соңғы шыққан нәтижеден
1-ді шегеріп (33 — 1 = 32), шыққан санды 4-ке бөлу керек (32:4 = 8), бұл ойланған сан (8) болып табылады.Егер де сенде 25 шыққан болса, онда фокусшы ойша 25—1=24, 24:4 = 6 амалдарын. орындайды да, сенің-6-ны ойлағаныңды айтады.
Міне, көрдің бе, барлығы өте оңай: фокусшы ойланған санды табу үшін сенің айтатын нәтижеңмен не істеу керек екенін алдын ала біледі.
Сендер осыларды түсініп алып, таныстарыңды бұрынғыдан бетер таңырқатып әрі қайран қалдыруларыңа болады, бұл үшін оларға,әлгі ойланған санға өздерінің қалаған амалдарын, қолдануды ұсыныңдар. Сен танысыңа бір сан ойлауды және оған белгілі бір санды қосу немесе азайту (айталық: 2-ні қосу, 5-ті азайту т. с. с), белгілі бір санға (2-ге, 3-ке т. с с) көбейту, ойланған санды қосу немесе сол санға азайту амалдарын кез келген ретпен орындауды ұсынасың. Танысың сені шатастыру үшін амалдарды ұзарта түседі. Мысалы, ол 5 санын ойға ұстап (бұл санды сізге айтпайды) және амалдарды ойша орындай отырып, былай дейді:
— Мен бір сан ойладым, оны 2-ге көбейттім, нәтижеге 3-ті қостым, сонан соң ойланған санды қостым; мен енді 1-ді қостым, 2-ге көбейттім, ойланған санға азайттым, 3-ке азайттым тағы да ойланған санды азайттым, 2-ге азайттым. Мен ең соңында нәтижені 2-ге көбейттім және 3-ті қостым.
Сені осылайша әбден шатастырдым деп біліп, ол масаттанған түрмен саған:
— 49 шықты дейді.
Сен оны таңырқатып дереу оның ойға 5 санын жасырғанын айтасың.
Сен мұны қалай таптың? Енді бұл ете айқын. Танысың саған өзі ойлаған санға қолданатын амалдарын айтқан кезде, сен онымен бір мезгілде ойша х белгісізіне амал қолдан. Ол саған «Мен бір сан ойладым» дегенде, сен өзіңше «демек, х саны» деп біл. Ол: «... оны 2-ге көбейттім...» дегенге (ол шынында өзі ойлаған санын көбейтеді), сен өзіңше: «енді 2х» болды деп жалғастыр. Ол: «...нәтижеге 3-ті қостым...» дегенде, сен бірден 2х+3 болды деп жалғастыр т. с с Ол сені әбден «шатастырып», жоғарыда айтылған амалдардың бәрін орындап болған соң, мына таблицада көрсетілгендей жайт шықса (мұның сол жақ бағанында сенің танысың естіртіп айтатын амалдары, ал оң жақтағысында сенің ойша орындайтын амалдарың жазылған):
Мен бір сан ойладым,
|
х
|
оны 2-ге көбейттім,
|
2х
|
нәтижеге 3-ті костым,
|
2х+3
|
мұнан соң ойланған санды костым,
|
3х+3
|
мен енді 1-ді қостым,
|
3х+4
|
2-ге көбейттім,
|
6х + 8
|
ойланған санға азайттым,
|
5х+8
|
3-ке азайттым,
|
5х+5
|
тағы да ойланған санды азайттым,
|
4х + 5
|
2-ге азайттым,
|
4х+3
|
мен сен соңында нәтижені 2-ге көбейттім
|
8х+ 6
|
және 3-ті қостым
|
8х+9
|
Сен ең ақырында ең соңғы нәтиженің 8х+9 екенін ойыңа ұстайсың. Енді ол: «49 шықты» дейді. Ал сенің ойыңда теңдеу дайын тұр: 8х + 9 = 49. Мұны шешу саған оп оңай, сен бірден оның 5 санын ойлағанын айтасың.
Бұл фокустың ерекше күшті әсер ету себебі, ойланған санға қолданылатын амалдарды сен емес, оларды сенің жолдасыңның өзінің «ойлап табуында».
Фокус іске аспайтын бір жағдай бар. Мысалы: егер бірнеше амал қолданылғаннан кейін өзіңде (ойша іштен есептегенде) х+14 теңдеуі шығып, ал жолдасың: «...мен енді ойлаған санға кеміттім, сонда 14 шықты» десе, онда өзің (х+14)— х=14 болатынын байқай отырып, шынында 14 шығатынын аңғарасың, ешқандай теңдеу шықпағандықтан өзің ойланған санды анықтай алмайсың. Мұндай жағдайда не істеу керек Былай істеңдер: өзің ойша есептеуіңде х белгісізі болмайтын нәтиже шыққанда, жолдасыңа: «Тоқтай қал! Мен енді ештеңе сұрамай-ақ сенің есептеуіңде 14 саны шыққанын айта алам»— деп, сөзін бөл. Бұл жайт танысыңды әбден таңырқатады — себебі ол өзіңе ештеңе айтқан жоқ
емес пе!
Сен ойлаған санды біле алмағаныңмен,фокус өте әсерлі болып шығады!
Мысал келтірейік (бұрынғыша сол жақ бағанда танысыңның айтқандары жазылған):
Мен бір сан ойладым,
|
х
|
оған 2-ні қостым,
|
х+2
|
нәтижені 2-ге көбейттім,
|
2х+4
|
мен енді 3-ті қостым,
|
2х + 1
|
ойланған санға азайттым,
|
х+7
|
5-ті қостым,
|
х+12
|
мен енді ойланған санға азайттым
|
12
|
Осы сәтте, сенде 12 саны, яғни х белгісізі жоқ өрнек шыққан кезде, сен жолдасыңның сөзін бөліп, оның есептеуінде 12 санының шыққандығын айтасың.
Біраз жаттығып алып, танысыңа осындай «фокусты» оп-оңай керсете алатын боласың.
ЕСЕ П . «Қисынсыз жору»
Мынау бір есеп мүлде мағынасыз болып көрінуі мүмкін:
Егер 8•8 = 54 болса, 84 неге тең?
Осы оғаш сұрақ онша мағынасыз емес, бұл есепті теңдеу құрып шығаруға болады.
ШЕШУІ: Бәлкім, сендер есепке енген сандардың ондық санау системасында жазылмағандығын аңғарған боларсыңдар — әйтпесе «84 неге тең» деген сұрақ мағынасыз болған болар еді. Белгісіз санау системасының негізі х болсын. «84» саны бұл жағдайда екінші разрядтың 8 бірлігін және бірінші разрядтың 4 бірлігін көрсетеді, яғни
84 = 8х + 4.
«54» саны 5х + 4 екенін көрсетеді. 8•8 = 5х + 4 теңдеуі шығады, бұл ондық санау системасында
64 = 5х: + 4 болып жазылады, бұдан х=12. Сан он екілік санау системасында жазылған,
«84» == 8•12+4=100. Сонымен, егер 8•8=«54» болса, онда
«84» = 100.
Мына түрдегі есепте осыған ұқсас шығарылады: 5•6 = 33 болганда, 100 неге тең болады? Жауабы: 81 (тоғыздық санау системасы).
Теңдеу біз үшін ойлайды.
Егер сендер теңдеудің кей кездерде біздің өзімізден гөрі алдын ала болжағыштығына күмәнданатын болсандар, мына есепті шығарып көріңдер.
Әкесі 32 жаста, баласы 5 жаста. Қанша жылдан кейін әкесінің жасы баласының жасынан 10 есе үлкен болады?
Ізделіп отырған мерзімді х арқылы белгілейік. х жыл өткен соң әкесі 32 + х, баласы 5+х жаста болады. Әкесінің жасы ол кезде баласының жасынан 10 есе үлкен болуы себепті, мынадай теңдеу шығады:
32+х=10(5+х).
Мұны шешіп, х=-2 болатынын табамыз.
«Минус 2 жылдан соң» деген «екі жыл бұрын» деген сөз. Біз теңдеу құрған кезімізде, болашақта ешқашан әкесінің жасы баласының жасынан 10 есе үлкен бола алмайтынын ескермегенбіз— ондай қатынас тек өткен уақытта ғана болуы мүмкін еді. Теңдеу бізден өткен ойлампаз болды және де өзіміз жіберіп алған ағаттықты ескертті.
Қызықты, әрі тосын жағдайлар.
Біз кейде теңдеулерді шешу кезінде тәжірибесі аз математикті тұйыққа әкеп тірейтін жауапқа кезігеміз. Бірнеше мысал келтірейік.
I. Төмендегідей қасиеттері бар екі таңбалы санды табыңдар.
Ондық цифры бірлік цифрынан 4-ке кем. Егер сол цифрлармен, бірақ керісінше жазылған саннан ізделінді санды шегерсе, онда 27 шығады.
Ондықтар цифрын х арқылы, ал бірліктер цифрын у арқылы белгілеп, бұл есеп үшін мына теңдеулер системасын оп-оңай құрамыз:
х-тің бірінші теңдеудегі мәнін оның екінші теңдеудегі орнына қойып, мынаны табамыз: 10y + у−4−[10 у−4) y]=27,
осыны түрлендіргенімізде мынау шығады:
36 = 27.
Белгісіздердің мәндері анықталмағанымен, оның есесіне біз 36 = 27... болатынын білдік. Бұл не деген сөз?
Бұл — есепте қойылған шартты қанағаттандыратын екі таңбалы сан жоқ және құрылған теңдеулер бір-біріне қайшы — деген сөз.
Шынында да: бірінші теңдеудің екі жағын 9-ға көбейтіп, одан біз мынаны табамыз: 9y-9x = 36,
ал екінші теңдеуден (жақшаларды ашып, ұқсас мүшелерді біріктіргеннен соң) мынау шығады: 9y-9x = 27.
Бір ғана 9y-9x шамасы бірінші теңдеу бойынша 36-ға тең, ал екіншісі бойынша 27-ге тең. Бұлай болуы мүмкін емес, себебі 36≠27.
Төмендегі теңдеулер системасын шешкенде де осындай қателік кездеседі:
Бірінші теңдеуді екіншіге бөліп, мынаны табамыз: ху = 2,
осы .теңдеуді екінші теңдеумен салыстырсақ, мынаны байқаймыз:
яғни 4 = 2. Бұл теңдеулер системасын қанағаттандыратын сан жоқ. (Осы қарастырылып өткен теңдеулер системасы үйлесімсіз деп аталады.)
Достарыңызбен бөлісу: |