Қазақстан республикасының білім және ғылым министірлігі


-Дәріс. Жиындардың қуаты (2 сағат)



жүктеу 21,8 Mb.
бет18/214
Дата09.01.2018
өлшемі21,8 Mb.
#7265
түріМазмұндама
1   ...   14   15   16   17   18   19   20   21   ...   214

3-Дәріс. Жиындардың қуаты (2 сағат)

Дәріс конспектісі.

Берілген А және В ақырлы жиындарының қуаттарының теңдігін олардың элементтерін санау арқылы білуге болады. Мысалы, A={a, b, c, d, e, f}; B={α, β, γ, δ, ε, ζ}; |A| = |B| =6.

Жиындардың теңдігін білудің басқа да жолы бар:


A

a

b

c

d

e

f

B

α

β

γ

δ

ε

ζ

Егер а A үшін бір ғана bB сәйкес болса және керісінше әрбір bB үшін бір ғана aA сәйкес болса, онда А және В жиындарының арасында өзара бір мәнді сәйкестік бар дейді.Мұндай жиындар эквивалентті немесе тең қуатты жиындар деп аталады. Айталық N натурал сандар жиыны болсын 1, 2, 3, 4, 5, …, M – олардың квадраттарының жиыны: 1, 4, 9, 16, 25, Олай болса, N ~ M.

Натурал сандар жиынына эквивалентті жиындар саналымды жиындар деп аталынады. Саналымды жиын туралы мынадай теорема бар:



1-Теорема. Қандай да бір жиын саналымды болу үшін, оның элементтерін шексіз тізбек түрінде кескіндеу қажетті және жеткілікті.

2-Теорема. Саналымды жиынның кез-келген ішкі жиыны саналымды жиын.

3-Теорема. Ақырлы немесе саналымды жиындардың бірігуі-саналымды жиын.

Салдар. Рационал сандар жиыны саналымды жиын. Шынында да барлық оң рационал сандарды шексіз кесте түрінде өрнектеуге болады:

1/1, 1/2, 1/3, 1/4, 1/5, …

2/1, 2/2, 2/3, 2/4, 2/5, …

3/1, 3/2, 3/3, 3/4., 3/5, …

4/1, 4/2, 4/3, 4/4, 4/5, …

…………………………,

Бұл кестені сол жақ жоғарғы бұрыштан бастап диагональ бойымен айналуға болады. Бірақ барлық шексіз жиындар саналымды емес.

Кантор теоремасы. [0;1] кесіндісіндегі барлық нақты сандар жиыны саналымды емес. Теореманы кері жорып дәлелдейміз . Айталық бұл жиын саналымды болсын. Демек, бұл жиынның барлық элементтерін шексіз тізбек түрінде өрнектеуге болады.

Α1 = 0,а11а12а13а14

Α2 = 0,а21а22а23а24

Α3 = 0,а31а32а33а34…

………………………

Төмендегі тәртіппен В = b1b2b3b4…шексіз ондық бөлшек тізбегін b1 ≠ a11, b2 ≠ a22, b3 ≠ a33 және т.б. құрайық. Бұл бөлшек айтылған тізбекке енбейді, себебі тізбектің бірінші мүшесінен оның бірінші цифры өзгеше, екіншісінен екінші цифры өзгеше т.б. Ендеше [ 0;1] кесіндісінің барлық нақты сандар жиыны саналымды емес. Бұл жиынның қуаты континуум (С қуатты), ал С қуатты жиын континуальды жиын деп аталады.



Теорема. [a,b] кесіндісінің бардлық нақты сандар жиыны континуум қуатты.

Шынында да y=a+(b - a)x функциясы [ 0; 1] және [ a; b] кесіндісінің нүктелерінің арасында өзара бір мәнді сәйкестік орнатады, демек [ a; b] кесіндісіндегі нақты сандар жиынының қуаты [ 0; 1] кесіндісіндегі нақты сандар жиынының қуатындай.



Теорема. Континуум қуатты ақырлы немесе саналымды жиындардың жиыны – континуум қуатты жиын болып табылады.

1 Салдар. Барлық нақты сандар жиыны континуум қуатты.



2 Салдар. Барлық иррационал сандар жиынының қуаты С. I=R/Q

Негізгі әдебиет: 2[12-20]; 3[10-43]

Қосымша әдебиет: 7[9-34]

Бақылау сұрақтары:



  1. Қандай жиын саналымды жиын деп аталады?

  2. Қандай жиындар континуум қуатты?

  3. Ақырлы жиынға, континуум қуатты жиындарға мысал келтіріңіз.

  4. Жазықтықтағы нүктелер жиынының қуаты қандай?

  5. Екінің дәрежесі болатын сандардан құралған жиынның қуаты қандай?

4-Дәріс. Қатынастар. Бинарлы қатынастар. (2 сағ)

Дәріс конспектісі:

Қатынастар–жиын немесе жиындар элементтерінің арасындағы өзара байланыстарды беру тәсілдері. Қатынастардың ішінен унарлы, бинарлы қатынастар көбірек белгілі. Унарлы (бір орынды) қатынастар бір жиын элементтерінің белгілі бір R қасиетінің болуын бейнелейді.М жиынының R қасиетімен (белгісімен) ерекшеленетін элементтерінің жиыны М-ң бір ішкі жиынын құрайды.(Мысалы, қобдишадағы шарлардың бір бөлігінің ақ болуы) Оларды унарлы қатынас деп атайды, R мен белгіленеді, яғни aR, RM.

Бинарлы қатынастар.

Бинарлы қатынастар М жиынының бір жұп элементтерінің қандай да бір өзара қарым-қатынасын анықтауға қолданылады. Мысалы, М адамдар жиыны десек 2 адамның бір қалада тұруы, бір ұйымда қызмет істеуі, біреуінің екіншісінен жас болуы, әке мен бала болуы т. б.



Анықтама Екі орынды немесе бинарлы Р қатынасы деп А, В жиындарының декарт (тура) көбейтіндісінің (a,b) жұптарынан тұратын ішкі жиынын айтады және (a,b)P, PAB болып белгіле неді. А–Р қатынасының анықталу облысы, ал В мәндер облысы деп аталады.Айталық, PAxB қатынасы мына суреттегідей кескінделсін:

Бинарлы қатынас бір жиынның ішінде болса, мысалы М-жиынында болса Р қатынасы (a,b)P, PMхM=M2 немесе (a,b)P, аРb болып белгіленеді. Жалпы жағдайда n орынды R қатынасы деп n жиынның тура (декарт) көбейтіндісінің R ішкі жиынын айтады:

R  M1 x M2 x…x Mn

Егер (a1,a2,…,an)R, ал (a1M1,…,anMn) онда a1,a2,…,an элементтері R қатынасында делінеді. Егер n орынды R қатынасы М жиынында болса, яғни M1=M2=…=Mn, онда RM n.



Бинарлық қатынастардың берілу тәсілдері.

Бинарлық қатынастар жиын болғандықтан, жиынның берілу тәсілдерінің бәрімен беріле алады. Ақырлы жиындарда берілген қатынастар әдетте төмендегідей әдістермен беріледі:



1. Бинарлы қатынас орындалатын жұптардың тізімі арқылы. Мысалы, A={2,3,4,5,6,7,8} жиыны берілсін. P={(x,y) | x,yA, y x-ке бөлінеді және x≤3} бинарлы қатынасын P={ (2,2), (2,4), (2,6) ,(2,8 ) ,(3,3) ,(3,6) } түрінде жазуға болады.

2. Графиктік түрде: Графиктік кескіндеудің бірнеше түрлері бар:

2.1. Координат өсьтеріне қатынастың элементтерін белгі леу арқылы. Алдыңғы мысалды графикалық түрде суреттегідей кескіндеуге болады.

2.2. А мен В жиындарының элементтерінің арасындағы Р қатынасын стрелкалар арқылы көрсетуге болады.

Мысалы,A={a,b,c}; B={1,2,3} жиындары берілсін. Олардың элементтерінің арасындағы



P1={(a,2),(b,1),(c,2)} қатынасын төмендегі 6-суретпен кескіндеуге болады.

2.3. Граф арқылы да кескіндеуге болады. Мысалы, P2={(a,b),(b,b),(c,a)} қатынасының граф түріндегі бейнесі 6-суреттегідей болады.



жүктеу 21,8 Mb.

Достарыңызбен бөлісу:
1   ...   14   15   16   17   18   19   20   21   ...   214




©g.engime.org 2024
әкімшілігінің қараңыз

    Басты бет
рсетілетін қызмет
халықаралық қаржы
Астана халықаралық
қызмет регламенті
бекіту туралы
туралы ережені
орталығы туралы
субсидиялау мемлекеттік
кеңес туралы
ніндегі кеңес
орталығын басқару
қаржы орталығын
қаржы орталығы
құрамын бекіту
неркәсіптік кешен
міндетті құпия
болуына ерікті
тексерілу мемлекеттік
медициналық тексерілу
құпия медициналық
ерікті анонимді
Бастауыш тәлім
қатысуға жолдамалар
қызметшілері арасындағы
академиялық демалыс
алушыларға академиялық
білім алушыларға
ұйымдарында білім
туралы хабарландыру
конкурс туралы
мемлекеттік қызметшілері
мемлекеттік әкімшілік
органдардың мемлекеттік
мемлекеттік органдардың
барлық мемлекеттік
арналған барлық
орналасуға арналған
лауазымына орналасуға
әкімшілік лауазымына
инфекцияның болуына
жәрдемдесудің белсенді
шараларына қатысуға
саласындағы дайындаушы
ленген қосылған
шегінде бюджетке
салығы шегінде
есептелген қосылған
ұйымдарға есептелген
дайындаушы ұйымдарға
кешен саласындағы
сомасын субсидиялау