3-Дәріс. Жиындардың қуаты (2 сағат)
Дәріс конспектісі.
Берілген А және В ақырлы жиындарының қуаттарының теңдігін олардың элементтерін санау арқылы білуге болады. Мысалы, A={a, b, c, d, e, f}; B={α, β, γ, δ, ε, ζ}; |A| = |B| =6.
Жиындардың теңдігін білудің басқа да жолы бар:
A
|
a
|
b
|
c
|
d
|
e
|
f
|
B
|
α
|
β
|
γ
|
δ
|
ε
|
ζ
|
Егер а A үшін бір ғана bB сәйкес болса және керісінше әрбір bB үшін бір ғана aA сәйкес болса, онда А және В жиындарының арасында өзара бір мәнді сәйкестік бар дейді.Мұндай жиындар эквивалентті немесе тең қуатты жиындар деп аталады. Айталық N натурал сандар жиыны болсын 1, 2, 3, 4, 5, …, M – олардың квадраттарының жиыны: 1, 4, 9, 16, 25, Олай болса, N ~ M.
Натурал сандар жиынына эквивалентті жиындар саналымды жиындар деп аталынады. Саналымды жиын туралы мынадай теорема бар:
1-Теорема. Қандай да бір жиын саналымды болу үшін, оның элементтерін шексіз тізбек түрінде кескіндеу қажетті және жеткілікті.
2-Теорема. Саналымды жиынның кез-келген ішкі жиыны саналымды жиын.
3-Теорема. Ақырлы немесе саналымды жиындардың бірігуі-саналымды жиын.
Салдар. Рационал сандар жиыны саналымды жиын. Шынында да барлық оң рационал сандарды шексіз кесте түрінде өрнектеуге болады:
1/1, 1/2, 1/3, 1/4, 1/5, …
2/1, 2/2, 2/3, 2/4, 2/5, …
3/1, 3/2, 3/3, 3/4., 3/5, …
4/1, 4/2, 4/3, 4/4, 4/5, …
…………………………,
Бұл кестені сол жақ жоғарғы бұрыштан бастап диагональ бойымен айналуға болады. Бірақ барлық шексіз жиындар саналымды емес.
Кантор теоремасы. [0;1] кесіндісіндегі барлық нақты сандар жиыны саналымды емес. Теореманы кері жорып дәлелдейміз . Айталық бұл жиын саналымды болсын. Демек, бұл жиынның барлық элементтерін шексіз тізбек түрінде өрнектеуге болады.
Α1 = 0,а11а12а13а14…
Α2 = 0,а21а22а23а24…
Α3 = 0,а31а32а33а34…
………………………
Төмендегі тәртіппен В = b1b2b3b4…шексіз ондық бөлшек тізбегін b1 ≠ a11, b2 ≠ a22, b3 ≠ a33 және т.б. құрайық. Бұл бөлшек айтылған тізбекке енбейді, себебі тізбектің бірінші мүшесінен оның бірінші цифры өзгеше, екіншісінен екінші цифры өзгеше т.б. Ендеше [ 0;1] кесіндісінің барлық нақты сандар жиыны саналымды емес. Бұл жиынның қуаты континуум (С қуатты), ал С қуатты жиын континуальды жиын деп аталады.
Теорема. [a,b] кесіндісінің бардлық нақты сандар жиыны континуум қуатты.
Шынында да y=a+(b - a)x функциясы [ 0; 1] және [ a; b] кесіндісінің нүктелерінің арасында өзара бір мәнді сәйкестік орнатады, демек [ a; b] кесіндісіндегі нақты сандар жиынының қуаты [ 0; 1] кесіндісіндегі нақты сандар жиынының қуатындай.
Теорема. Континуум қуатты ақырлы немесе саналымды жиындардың жиыны – континуум қуатты жиын болып табылады.
1 Салдар. Барлық нақты сандар жиыны континуум қуатты.
2 Салдар. Барлық иррационал сандар жиынының қуаты С. I=R/Q
Негізгі әдебиет: 2[12-20]; 3[10-43]
Қосымша әдебиет: 7[9-34]
Бақылау сұрақтары:
Қандай жиын саналымды жиын деп аталады?
Қандай жиындар континуум қуатты?
Ақырлы жиынға, континуум қуатты жиындарға мысал келтіріңіз.
Жазықтықтағы нүктелер жиынының қуаты қандай?
Екінің дәрежесі болатын сандардан құралған жиынның қуаты қандай?
4-Дәріс. Қатынастар. Бинарлы қатынастар. (2 сағ)
Дәріс конспектісі:
Қатынастар–жиын немесе жиындар элементтерінің арасындағы өзара байланыстарды беру тәсілдері. Қатынастардың ішінен унарлы, бинарлы қатынастар көбірек белгілі. Унарлы (бір орынды) қатынастар бір жиын элементтерінің белгілі бір R қасиетінің болуын бейнелейді.М жиынының R қасиетімен (белгісімен) ерекшеленетін элементтерінің жиыны М-ң бір ішкі жиынын құрайды.(Мысалы, қобдишадағы шарлардың бір бөлігінің ақ болуы) Оларды унарлы қатынас деп атайды, R мен белгіленеді, яғни aR, RM.
Бинарлы қатынастар.
Бинарлы қатынастар М жиынының бір жұп элементтерінің қандай да бір өзара қарым-қатынасын анықтауға қолданылады. Мысалы, М адамдар жиыны десек 2 адамның бір қалада тұруы, бір ұйымда қызмет істеуі, біреуінің екіншісінен жас болуы, әке мен бала болуы т. б.
Анықтама Екі орынды немесе бинарлы Р қатынасы деп А, В жиындарының декарт (тура) көбейтіндісінің (a,b) жұптарынан тұратын ішкі жиынын айтады және (a,b)P, PAB болып белгіле неді. А–Р қатынасының анықталу облысы, ал В мәндер облысы деп аталады.Айталық, PAxB қатынасы мына суреттегідей кескінделсін:
Бинарлы қатынас бір жиынның ішінде болса, мысалы М-жиынында болса Р қатынасы (a,b)P, PMхM=M2 немесе (a,b)P, аРb болып белгіленеді. Жалпы жағдайда n орынды R қатынасы деп n жиынның тура (декарт) көбейтіндісінің R ішкі жиынын айтады:
R M1 x M2 x…x Mn
Егер (a1,a2,…,an)R, ал (a1M1,…,anMn) онда a1,a2,…,an элементтері R қатынасында делінеді. Егер n орынды R қатынасы М жиынында болса, яғни M1=M2=…=Mn, онда RM n.
Бинарлық қатынастардың берілу тәсілдері.
Бинарлық қатынастар жиын болғандықтан, жиынның берілу тәсілдерінің бәрімен беріле алады. Ақырлы жиындарда берілген қатынастар әдетте төмендегідей әдістермен беріледі:
1. Бинарлы қатынас орындалатын жұптардың тізімі арқылы. Мысалы, A={2,3,4,5,6,7,8} жиыны берілсін. P={(x,y) | x,yA, y x-ке бөлінеді және x≤3} бинарлы қатынасын P={ (2,2), (2,4), (2,6) ,(2,8 ) ,(3,3) ,(3,6) } түрінде жазуға болады.
2. Графиктік түрде: Графиктік кескіндеудің бірнеше түрлері бар:
2.1. Координат өсьтеріне қатынастың элементтерін белгі леу арқылы. Алдыңғы мысалды графикалық түрде суреттегідей кескіндеуге болады.
2.2. А мен В жиындарының элементтерінің арасындағы Р қатынасын стрелкалар арқылы көрсетуге болады.
Мысалы,A={a,b,c}; B={1,2,3} жиындары берілсін. Олардың элементтерінің арасындағы
P1={(a,2),(b,1),(c,2)} қатынасын төмендегі 6-суретпен кескіндеуге болады.
2.3. Граф арқылы да кескіндеуге болады. Мысалы, P2={(a,b),(b,b),(c,a)} қатынасының граф түріндегі бейнесі 6-суреттегідей болады.
Достарыңызбен бөлісу: |