1.3. Жабу және бөліктеу
Айталық, {Ai | iI} А жиынының бос емес ішкі жиындары болсын. Ai A
Анықтама. Егер A = болса, яғни А жиынының әр элементі Аі жиындарының ең болмаса біреуіне кірсе, онда бос емес {Ai | iI} жиыны А жиынының жабуы деп, ал егер ij болғанда Ai Aj = болса, жабу бөліктеу деп аталады ( I , jI ij = Ai Aj = ). Басқа сөзбен айтқанда А жиынының бос емес {Ai | iI} ішкі жиындары қиылыспаса яғни А-ның әр элементі бос емес Аі жиындарының тек біреуіне ғана кіретін болса, онда {Ai | iI} жиыны А жиынының бөліктеуі деп аталады. Мысалы, А={1,2,3} болса, онда {{1,2},{2,3},{3,1}} – А жиынын жабады, ал {{1},{2},{3}} – А жиынының бөліктеуі болады.
Жиындардың Декарт көбейтіндісі
х1...хn n элементтен тұратын реттелген тізбекті (x1,x2,…,xn) немесе 1,x2,…,xn> деп белгілеуге болады. Мұндағы дөңгелек, бұрышты жақшалар элементтердің жазылу ретін көрсету үшін ғана қолданылады. Мұндай нөмірлерінің ретіне қарай орналасқан тізбек ұзындығы реттелген тізбек немесе ұзындығы n болатын кортеж деп аталады. -элемент 1,x2,…,xn> кортежінің і- координатасы деп аталады.
Мысалдар
{a,b,c} және {1,2} жиындарынан ұзындығы 2-ге тең 6 кортеж құруға болады:
(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)
2. Кез-келген әріптерден құралған сөз кортеж, натурал сандардың ондық жүйедегі жазылуы цифрлардан тұратын кортеж т. б.
Кез-келген координаттары әртүрлі реттелген ақырлы жиын кортеж.Ұзындығы 2-ге тең кортеждер реттелген жұптар, ұзындығы 3-ке тең кортеждер реттелген үштіктер, ұзындығы n-ге реттелген n-діктер деп аталады. Жиындар екі элементпен алу амалының көмегімен төмендегі ережеге сәйкес кодталады.
< >⇋, 1> ⇋x1, 1, x2>⇌{{x1},{x1,x2}}, 1,…,xn>⇌< 1,x2,…,xn>, xn+1 >
Анықтама.Екі кортеж ұзындықтары бірдей, әрі бірдей нөмірлі координаттары тең болса ғана тең болады. Яғни x=(x1,x2,…,xn) , y=(y1,y2,…,yn) кортеждері x1=y1; x2=y2,…xn=yn болғанда ғана тең болады
( x=y ). Мысалы (12, 22 , 32 ) және ( ) кортеждері тең. (1,2,3) және (3,1,2) әртүрлі ; (1,2,3) және (1,2,3,4) әртүрлі; (1,2)(2,1) ал {1,2} және {2,1} жиындары тең. Кортеждердің координаттары жиын, кортеж т. б. болуы мүмкін. Мысалы, ({a,b},c)=({b,a},c) себебі {a,b}={b,a}, ал ( (a,b ), c ) және ( (b,a), c ) кортеждері тең емес, себебі (a,b)(b,a). Бір де бір координаты жоқ кортеж (ұзындығы 0) бос кортеж деп аталады.
Сонымен жиын мен кортеж ұғымдарының айырмашылығы:
а) жиындардың элементтерінің орны, реті бәрі бір, ал кортеждерде элементтерінің ұзындығы бірдей болып элементтерінің реті басқаша болса тең емес (құрамы бірдей болса да);
б) жиында элементтер әртүрлі, кортежде бірдей бола береді.
Достарыңызбен бөлісу: |