Закон Харди Вайнберга. Ограниченный рост. Уравнение Ферхюльста Заключение Источники информации


Классификация математических моделей



жүктеу 211,53 Kb.
бет3/11
Дата04.01.2022
өлшемі211,53 Kb.
#36290
түріЗакон
1   2   3   4   5   6   7   8   9   10   11
000f8358-8a4f66fe

Классификация математических моделей

При разработке любой модели необходимо определить объект моделирования, цель моделирования и средства моделирования. В соответствии с объектом и целями математические модели в биологии можно подразделить на три больших класса. Первый - регрессионные модели, включает эмпирически установленные зависимости (формулы, дифференциальные и разностные уравнения, статистические законы) не претендующие на раскрытие механизма изучаемого процесса.

Второй класс - имитационные модели конкретных сложных живых систем, как правило, максимально учитывающие имеющуюся информацию об объекте. Имитационные модели применяются для описания объектов различного уровня организации живой материи - от биомакромолекул до моделей биогеоценозов. В последнем случае модели должны включать блоки, описывающие как живые, так и "косные" компоненты.

Имитационные модели созданы для описания физиологических процессов, происходящих в жизненно важных органах: нервном волокне, сердце, мозге, желудочно-кишечном тракте, кровеносном русле. На них проигрываются "сценарии" процессов, протекающих в норме и при различных патологиях, исследуется влияние на процессы различных внешних воздействий, в том числе лекарственных препаратов. Имитационные модели широко используются для описания продукционного процесса растений и применяются для разработки оптимального режима выращивания растений с целью получения максимального урожая, или получения наиболее равномерно распределенного во времени созревания плодов. Особенно важны такие разработки для дорогостоящего и энергоемкого тепличного хозяйства.

В любой науке существуют простые модели, которые поддаются аналитическому исследованию и обладают свойствами, которые позволяют описывать целый спектр природных явлений. Такие модели называют базовыми. В физике классической базовой моделью является гармонический осциллятор (шарик -материальная точка - на пружинке без трения). Базовые модели, как правило, подробно изучаются в различных модификациях. В случае осциллятора шарик может быть в вязкой среде, испытывать периодические или случайные воздействия, например, подкачку энергии, и прочее. После того, как досконально математически изучена суть процессов на такой базовой модели, по аналогии становится понятными явления, происходящие в гораздо более сложных реальных системах. Например, релаксация конформационных состояний биомакромолекулы рассматривается аналогично осциллятору в вязкой среде. Таким образом, благодаря простоте и наглядности, базовые модели становятся чрезвычайно полезными при изучении самых разных систем.

Все биологические системы различного уровня организации, начиная от биомакромолекул вплоть до популяций, являются термодинамически неравновесными, открытыми для потоков вещества и энергии. Поэтому нелинейность - неотъемлемое свойство базовых систем математической биологии. Несмотря на огромное разнообразие живых систем, можно выделить некоторые важнейшие присущие им качественные свойства: рост, самоограничение роста, способность к переключениям - существование в двух или нескольких стационарных режимов, автоколебательные режимы (биоритмы), пространственная неоднородность, квазистохастичность. Все эти свойства можно продемонстрировать на сравнительно простых нелинейных динамических моделях, которые и выступают в роли базовых моделей математической биологии.



  1. жүктеу 211,53 Kb.

    Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   10   11




©g.engime.org 2024
әкімшілігінің қараңыз

    Басты бет
рсетілетін қызмет
халықаралық қаржы
Астана халықаралық
қызмет регламенті
бекіту туралы
туралы ережені
орталығы туралы
субсидиялау мемлекеттік
кеңес туралы
ніндегі кеңес
орталығын басқару
қаржы орталығын
қаржы орталығы
құрамын бекіту
неркәсіптік кешен
міндетті құпия
болуына ерікті
тексерілу мемлекеттік
медициналық тексерілу
құпия медициналық
ерікті анонимді
Бастауыш тәлім
қатысуға жолдамалар
қызметшілері арасындағы
академиялық демалыс
алушыларға академиялық
білім алушыларға
ұйымдарында білім
туралы хабарландыру
конкурс туралы
мемлекеттік қызметшілері
мемлекеттік әкімшілік
органдардың мемлекеттік
мемлекеттік органдардың
барлық мемлекеттік
арналған барлық
орналасуға арналған
лауазымына орналасуға
әкімшілік лауазымына
инфекцияның болуына
жәрдемдесудің белсенді
шараларына қатысуға
саласындағы дайындаушы
ленген қосылған
шегінде бюджетке
салығы шегінде
есептелген қосылған
ұйымдарға есептелген
дайындаушы ұйымдарға
кешен саласындағы
сомасын субсидиялау