Сандық құрылғылардың іс әрекетін бейнелейтін математикалық аппарат логика алгебрасында немесе оның басқа атауы ағылшын математигі Джордж Булдің атында бульді алгебра деп атайды.
Математикалық логиканың негізін салған неміс математигі Готфрид Вильгельм Лейбниц (1646 - 1716 жж.). Ол универсалды тіл салуға қадам жасаған , соның көмегімен адамдар арасындағы бәсекелесті есеппен шешуге болушы еді. Лейбниц салған негізде ирлан математигі Джордж Буль (1815-1864 жж.) математикалық логиканың- жаңа ғылым мекемесін салған, ол жай алгебрадан айырмашылығы санмен емес сараптамамен оперирлейді.
Сараптама – бұл қандайда бір тұжырым, соған қатыст немесе жалған, сондай-ақ шындыққа сай ма екенін айтуға болады.
Осымен, сараптама бойынша екілік объект болып табылады, сондықтан сараптаманың шындық мәніне – 1-ге сай, ал жалған мәніне – 0 қояды.
Сараптамалар жай және күрделі болады. Жай сараптамалар алгебраикалық айнымалыларға сай, ал күрделілер алгебраикалық функцияның аналогы болып табылады. Функцияларды айнымалыларды қосу жолымен логикалық іс әрекет көмегімен алуға болады.
Техникалық жүйелерді анализдеу үшінлогика алгебрасын қолдануды көсеткен П.С. Эренфест (1910 ж.), ал 1938 ж. К. Шеннон Буль алгебрасын релелі сұлбаларын есептеуге қолданған. Осы уақытта логика алгебрасының математикалық аппарат сандық құрылғыларды жобалаудың негізі болып табылады.
Логика алгебрасы екілік айнымалымен оперирлейді, олар шартты белгіленеді, 0 және 1 сияқты. Айнымалыларды белгілеу үшін латын алфавитінің әріптері қолданылады. Алдымызда айнымалыларды белгілеу үшін Х әрпі индексімен, 1ден бастап айнымалының белгіленген нөмірі қолданылады. Функция үшін f (ν) мәні алынған, мұнда ν = (Х n , …, Х 1) айнымалылар жиынтығы. Айнымалылар шексіз көп болуы мүмкін, бірақ айнымалы комбинациялар саныжиынтықта үнемі 2 n ге тең
n айнымалыларының функциялары жиын айнымалыларының (Х n , …, Х 1)бәріне тәуелді емес, оларды туынды деп атайды. Барлық айнымалылар жиын (Х n , …, Х 1) комбинациялары мәні берілген n айнымалыларының функциясытолық анықталған деп аталады. Егер де бір айнымалы жиынының е функция мәні берілмесе, онда ол толық анықталмаған функция болып табылады. Толық анықталмаған функцияны керегінше анықтап, бұл жағдайда оған керек мән беру қажет.
Логика алгебрасының негізінде келесі аксиомалар бар:
Х = 0, если Х ≠ 1
Х = 1, если Х ≠ 0 ,
аксиома айнымалымен функция тек екі мән қабылдай алатынын анықтайды; _
0 = 1
_
1 = 0,
аксиома терістеу операциясын (инверсия) анықтайды;
0 ∙ 0 = 0
0 ∙ 1 = 0
1 ∙ 0 = 0
1 ∙ 1 = 1,
аксиома коньюнкция операциясын (логикалық көбейту) анықтайды;
0 0 = 0
0 1 = 1
1 0 = 1
1 1 = 1,
аксиома дизьюнкция операциясын (логикалық қосу) анықтайды;
Логика алгебрасының тепе теңдігі мен теоремалары функция өрнегін жеңілдету үшін қолданылады. Тепе теңдік теоремаларды дәлелдегенде қолданылады. Теоремалармен тепе теңдіктер логика алгебрасында оның аксиомаларын қолданылуымен айнымалылардың барлық мәндерін жинау әдісімен дәлелденеді.
Практикалық мәнде мынадай тепе теңдік болады:
Достарыңызбен бөлісу: |