Зерттеу нысаны – натурал сандар және олардың қасиеті.
Жұмыстың мақсаты: таңғажайып сандармен танысу және жай сандардың қасиеттері арқылы олардың ролін арттыру.
Бұл жай сандар деген соншалықты «жай ма»?
Әр түрлі екі бөлгіші бар сандар жай сандар деп аталады. Мысалы, 5=1∙5, 29=1∙29, 37=1∙37 және т.б. Ең кіші жай сан – 2. Бұл жалғыз ғана жұп жай сан.
Кішігірім зерттеу жүргізейік.
Натурал сандарды екі жай санның көбейтіндісі күйінде қарастырайық, Мысалы: 12=2∙2∙3; 18=2∙3∙3; 140=2∙2∙5∙7 және т. б. Енді математикадағы жай сандардың ролін жеңіл түсіндіруге болады: олар көбейтудің көмегімен қалған басқа барлық сандар тұрғызылатын сол «кірпіштер» екен. Барлық жай сандарды санауға бола ма? Ертеде-ақ ежелгі грек математигі Евклид ең үлкен жай санның табылмайтынын тұжырымдаған.
Барлық қалған сандарды оқып-үйренуде жай сан маңызды роль атқаратын болса, олардың тізімін жасау керек қой! Әрине, ең үлкен жай санның жоқ екенін білгеннен кейін, барлық жай санның тізімін жасауға үміттенуге болмайды. Бірақ 1000-ға дейінгі жай сандардың тізімін жасауға болатын шығар. Бұл жөнінде, яғни жалпы жай сандардың тізімін қалай жасау керектігі туралы біздің жыл санауымызға дейінгі ІІІ ғасырда өмір сүрген александриялық ғалым Эратосфен ойға қалды. Эратосфен өте жан-жақты адам болды: ол сандар теориясымен де, жұлдыздарды зерттеумен де айналысты. Бірақ оның есімі ғылымда жай сандарды іздеу әдісімен мәңгіге қалды. Ол математикамен қатар астрономия, география, тарихты да жақсы білген. Сол кездегі белгілі әлем картасы мен аспан денелерінің картасын жасаған, сондай-ақ кібісе (високосный) жылды еңгізудің қажеттілігін негіздеген. Оның негізгі жетістігі – Жердің көлемін адамдар оның шар тәріздес екенін білгенге дейін есептеп шығаруы. Эратосфен жай сандардың кестесін жасауға арналған өзінің тәсілін ұсынды.
Эратосфен балауыздан жасалған тақтайшада натурал сандарды алып тастап отырған. Сонда алғашқы кесте елек тәрізденіп, онда тек қана жай сандар қалған. Сондықтан оны Эратосфен елегі деп атаған.
Сонымен, бірінші жай сан – 2. Оны қалдыра отырып, екіге еселік болатын сандарды сызып тастаймыз. Келесі жай сан – 3. Оны қалдырып үшке еселік сандарды сызамыз және т.с.с. Нәтижесінде жай сандар тізбесін аламыз. Жай сандарды өте ұзақ еңбекті қажет ететін есептеулер арқылы алуға болады. Жақында 25692 цифрдан тұратын жай сан табылды! Оның жай сан екенін дәлелдеу үшін тез әрекет ететін компьютердің өзіне бірнеше апта қажет болды. Көріп отырғанымыздай, жай сандарды оңай табу мүмкін болмағандықтан, оларды құпия шифрлар үшін қолданатын болды, ал біз жай сандарды басқа таңғажайып сандарды табу үшін қолданатын боламыз.
Натурал сандарды 2-ден бастап 6 бағанға орналастырамыз. Жай сандарды табу үшін сүзіп алатын Эратосфен «торының» бір моделін аламыз. Дөңгелекпен қоршалғандардың бәрі-жай сандар. Құрама сандардың үсті сызылған. 5-тен басталатын барлық жай сандар тек қана екі бағанда: 4 пен 6-шы бағанда. 4-ші және 6-шы бағандардың қайсыбір жолында екі жай сан кездессе, онда бұл жай сандар «егіз» сандар жұбы деп аталады: (5;7), (11;13), (17;19), (29;31), (41;43) және т.с.с.
2 3 4 5 6 7
8 9 10 11 12 13
14 15 16 17 18 19
20 21 22 23 24 25
26 27 28 29 30 31
32 33 34 35 36 37
38 39 40 41 42 43
44 45 46 47 48 49
50 51 52 53 54 55
56 57 58 59 60 61
62 63 64 65 66 67
68 69 70 71 72 73
74 75 76 77 78 79
80 81 82 83 84 85
86 87 88 89 90 91
92 93 94 95 96 97
98 99 100 101 102 103
Достарыңызбен бөлісу: |