Күні:
Сабақ: математика
Тақырыбы: Екі амалдан тұратын жақшасы бар өрнектердегі арифметикалық амалдардардың орындалу реті
Мақсаты мен міндеттері: көбейту мен бөлу амалдарын орындауға үйрету, қалдықпен бөлуді үйрету;
1.Білімділік: мемлекеттік білім стандарты деңгейде білім, білік және дағдыларды игеру
2.Дамытушылық:оқушының ақыл-ойының математикалық стилін, ин-теллектуалдық және ерік пен сезімге қатысты сапаларын дамыту;
3.Тәрбиелік: меңгерген математикалық білімдерін омірде қоддануға жан-жақты дайыңдауды жүзеге асыру.
Сабақ түрі : жаңа сабақ
Көрнекіліктер: кесте;, қималы карточкала,
Әдіс-тәсілдер: жұптық, топтық, өзіндік
Сабақ барысы
1.Оқыту үрдісінің маңыздылығы: Ауызша есептеу:
30*3 60:2 40*3 50*3 100:20 120:40 140:20 80*3 70*4 40*4
90:30 210:7 160:20 40*6
2.Жаңа тапсырмаларды қалыптастыру:
(30+6):4 –өрнектің шешу жолдарын түсіндір
(5+2) *2
Жақшасы бар өрнекте алдымен жақша ішіндегі амал орындалады.
№2 амалдардың орындалу ретін сақтай отырып, есепте:
5*(10-4) (18+14):4 (60-30):5 (10+20):3
6*4+16 40:5+22 100-5*5 100:5+203
№3 кесте бойынша есеп құр , шешуін тап
1 жәшіктің массасы
|
Жәшіктер саны
|
Жалпы масса
|
3кг
|
6
|
?кг
|
?кг
|
5
|
30кг
|
4кг
|
?
|
28кг
|
Сергіту сәті
3.Жаңа білімді бекіту:
№4 амалдарды орында
392+408 (300-196)+74
600-156 800-(365+35)
456-244 292+(390-176)
№5 есепті шығар:
Жылыжайдан 25 кг қияр, 15кг қызанақ жиналды және әрқайсысында 5 кг жәшіктерге салынды. Неше жәшік қажет болды?
№6 Гүл сатушы 30 раушан гүлін 3 гүлден гүлшоқтарға бөлді. 6 гүлшоғын сатты. Гүл сатушыда неше гүлшоқ қалды?
91 бет №10-ауызша
К арточка бойынша жұмыс(4 оқушы)
4. Үйге тапсырма: 91 бет№10 90 бет №8
Күні:
Сабақ: математика
Тақырыбы: Үш амалдан тұратын жақшасы бар өрнектердегі арифметикалық амалдардардың орындалу реті
Мақсаты мен міндеттері: көбейту мен бөлу амалдарын орындауға үйрету, қалдықпен бөлуді үйрету;
1.Білімділік: мемлекеттік білім стандарты деңгейде білім, білік және дағдыларды игеру
2.Дамытушылық:оқушының ақыл-ойының математикалық стилін, ин-теллектуалдық және ерік пен сезімге қатысты сапаларын дамыту;
3.Тәрбиелік: меңгерген математикалық білімдерін омірде қоддануға жан-жақты дайыңдауды жүзеге асыру.
Сабақ түрі : жаңа сабақ
Көрнекіліктер: кесте;, қималы карточкала,
Әдіс-тәсілдер: жұптық, топтық, өзіндік
Сабақ барысы
1.Оқыту үрдісінің маңыздылығы: Ауызша есептеу:
30*3 60:2 40*3 50*3 100:20 120:40 140:20 80*3 70*4 40*4
90:30 210:7 160:20 40*6
2.Жаңа тапсырмаларды қалыптастыру:
8: (5:5+1) –өрнектің шешу жолдарын түсіндір
26-(6*4)*2
Үш амалдан тұратын жақшасы бар өрнекте алдымен жақша ішіндегі амалдар орындалады: ретімен көбейту мен бөлу, содан соң қосу мен азайту амалдары.
№2 қалып қойған амалдарды ата:
2 2 2 =1 2 2 2 =3 2 2 2 2 =2
2 2 2 =2 2 2 2 2 =3 2 2 2 2=5
.№3 амалдарды орында:
100-(6*5)+20 80:8*6-33 (625-225):4+348
30*3-(40+25) 4*100+36:9 900:9+(500:10)
№5 егер в- 0,1,2,5,8,10 в*8 өрнегінің мәнің тап.
№6 салыстыр
190+180*360+320 100+7*8*100
950-270*1000-560 300-36:6*280
Сергіту сәті
3.Жаңа білімді бекіту:
№8 қалдықпен бөлуді орында:
11:2 19:3 13:2 21:4 16:3 24:4
№10 есепті шығар:
Үй салу құрылысында 64 жұмысшы жұмыс істеді. Бұл басқа үйге қарағанда15 адам кем. Екі үй құрылысында неше адам жұмыс істеді?
Үйде 3 подъезд бар. Бірінші подъезде 18 пәтер, екінші подъезде одан 9 пәтер артық. Ал үшінші подъезде бірінші мен екінші подъезді бірге алғандыдай пәтер бар. 3 подъезде барлығы неше пәтер бар?
93 бет №11-ауызша
7см
3см
4см
6см
Буындарының ұзындығқтары көпбұрыштың қабырғаларының ұзындықтарына тең болатындай сынық сызық сыз.
4. Үйге тапсырма: 93 бет №12, ереже
Күні:
Сабақ: математика
Тақырыбы: Тік төртбұрыштың периметрін табудың әр түрлі тәсілдері
Мақсаты мен міндеттері: көбейту мен бөлу амалдарын орындауға үйрету, периметрді әр түрлі тәсілмен табуды үйрету;
1.Білімділік: мемлекеттік білім стандарты деңгейде білім, білік және дағдыларды игеру
2.Дамытушылық:оқушының ақыл-ойының математикалық стилін, ин-теллектуалдық және ерік пен сезімге қатысты сапаларын дамыту;
3.Тәрбиелік: меңгерген математикалық білімдерін омірде қоддануға жан-жақты дайыңдауды жүзеге асыру.
Сабақ түрі : жаңа сабақ
Көрнекіліктер: кесте;, қималы карточкала,
Әдіс-тәсілдер: жұптық, топтық, өзіндік
Сабақ барысы
1.Оқыту үрдісінің маңыздылығы: Өткенді пысықтау
![]()
2.Жаңа тапсырмаларды қалыптастыру:
3см
2см р-?
Р- 3+3+2+2=10см Р=(а+в)*2
Р- (3+2)*2=10см
2см
2см р-? Р-2+2+2+2=8см Р-2*4=8см Р=а*4
№3 тік төртбұрыштың периметрін әр түрлі тәсілмен тап:
15см
3см
Р-3+3+15+15=36см Р- (15+3)*2=36
Жауабы : Р=36см
№4 шаршының периметрін әр түрлі тәсілмен тап:
3см
Р-3+3+3+3=12см Р-3*4=12см
3см
Жауабы: Р=12см
Сергіту сәті
3.Жаңа білімді бекіту:
№6 есепте
100-(35:7)+5 200-(56:8)*8 600:6+9*10
8*100-70:7 650-(5*10)*2 500:50+20*4
№8 есепті шығар:
9 5 бет №9-ауызша
4. Үйге тапсырма: 95 бет №7,10, ереже.
![]()
![]()
![]()
![]()
Достарыңызбен бөлісу: |