яғни
Сөйтіп Чебышев теңсіздігін пайдаланып теңсіздігінің орындалуының ықтималдығын төменнен бағаладық, яғни теңсіздігі кем дегенде 0,8724 ықтималдықпен орындалады. Бұл тұжырымның құндылығы есептер шығарған кезде теңсіздігінің орындалуының дәл ықтималдығын табу мүмкін болмаған жағдайларда оның ықтималдығын төменне бағалауға мүмкіндік береді.
Мысал 2. Жарық беруші торға 20 электрошам параллель қосылған. Т уақыт ішінде әрбір шамның жарық беру ықтималдығы 0,8. Чебышев теңсіздігін пайдаланып Т уақытында жарық беруші барлық электрошамдармен, жарық беріп тұрған шамдардың арифметикалық орташа мәндерінің (математикалық үміті) айырмасының абсолюттік шамасының ықтималдығын бағалаңыз. Егер айтылған айырма: 1)төрттен кіші болса; 2) төрттен кем болмаса.
Достарыңызбен бөлісу: |