Цикломатикалық сан. Бағытталмаған G(V, E) графы берілсін. υ(G)=m-n+p, Мұндағы m–граф қабырғаларының саны; n–граф төбелерінің саны; p–байланысты компоненттер саны G(V, E) графының цикломатикалық саны деп аталады. Цикломатикалық санының физикалық мағынасы бар: ол графтың тәуелсіз циклдарының санына тең. Электр шынжырларын есептеген кезде цикломатикалық сан тәуелсіз контурлар санын есептеуге қолданылады.
1-Теорема.Егер G1 графы G графының суграфы болса, ондаυ(G1)≤ υ(G).
2-Теорема.Байланысты графтацикл болмауы үшін υ(G)=0 қажетті және жеткілікті.
3-Теорема.Егер G графтың екі байланыстыG1және G2 компоненттері бар болса, онда υ(G)=υ(G1)+υ(G2).
4-Теорема.Графта цикл болмауы үшін υ(G)=0 қажетті және жеткілікті.
Айталық, G(V, E) бағытталмаған граф. G графының S1, S2,…,Sk циклдар жүйесі сызықты тәуелді деп аталады, егер қандай да бір i1, i2, …,ir (1≤ i1 ≤ i2 ≤…≤ ir ≤ k) Si1∆ Si2∆…∆Sik ноль граф болса. Керісінше болса S1, S2, …,Sk циклдары сызықты тәуелсіз циклдар деп аталады. Сызықты-тәуелсіз циклдардың ең көп саны G графындағы тәуелсіз циклдар саны деп аталады.
5-Теорема. Графтың цикломатикалық саны оның тәуелсіз циклдарының санына тең.
Достарыңызбен бөлісу: |