Муавр формуласы
Комплекс саннан nші дәрежелі түбір табу және 1 ден табылған түбірлердің тобы.
Айталық, а=r(cos +isin ) комплекс саны берілсін. Онда жоғарыда қарастырылған көбейту амалының негізінде n- натурал саны үшін
яғни комплекс санды дәрежелегенде оның модулі сол дәрежеге шығарылады, ал аргументі сол дәреже көрсеткішіне көбейтіледі.
теңдігін пайдаланып, Муавр формуласын бүтін теріс сандар үшін де пайдалануға болады. a=a+bi комплекс санын оң бүтін n дәрежеге шығару үшін Ньютонның биномын пайдаланған орынды, тек
ескерсек жеткілікті.
Муавр формуласының дербес түрін қарастырайық.
cos n
Теңдіктің оң жақ бөлігіне Ньютонның биномды формуласын қолданайық.
Мұндағы теңдігінің сол және оң жақ бөліктерін салыстырсақ,
теңдіктерін аламыз.
Сонымен, , мұндағы
-ға әртүрлі мәндер беру арқылы түбірдің әртүрлі мәндерін аламыз.
Қорытынды. Комплекс сандардан n - ші дәрежелі түбірді әрқашан табуға болады және оның әртүрлі n мәні болады.
14. Векторлық кеңістіктің аксиомалары. Векторлар жүйесінің сызықты тәуелділігі мен тәуелсіздігі. Сызықтық тәуелділіктің қасиеттері.
Анықтама. Элементтері n координаттан тұратын векторлар болатын кеңістікті n-өлшемді кеңістік деп атаймыз, егер келесі аксиомалар орындалса:
a+b=b+a;
(a+b)+c=a+(b+c);
;
, c=-a;
;
;
;
;
Анықтама. a1, a2,…, ak векторлары немесе векторлар жүйесі берілсін
l1, l2, …, ln сандар l1* a1+ l2* a2+…+ ln* an=b, онда b векторы a1, a2,…, ak векторының сызықтық комбинациясы деп аталады.
Анықтама. a1, a2,…, ak векторлар жүйесі сызықтық тәуелді деп аталады, егер олардың нөлдік сызықтық комбинациясында (сызықтық комбинация нолге тең) ең болмаса бір коэффициент нолден өзгеше болса.
Анықтама. a1, a2,…, ak векторлар жүйесі сызықтық тәуелcіз деп аталады, егер олардың нөлдік сызықтық комбинациясында (сызықтық комбинация нолге тең) барлық коэффициент нолге тең болса.
Сызықты тәуелділіктің қасиеттері:
Егер векторлар жүйесінде a1, a2,…, ak ең болмаса бір вектор нолдік болса, онда бұл жүйе сызықты тәуелді болады.
Егер векторлар жүйесінде a1, a2,…, ak екі тең вектор бар болса, онда бұл жүйе сызықты тәуелді болады.
Егер сызықты тәуелді жүйеге бірнеше вектор қоссақ, онда жаңа жүйе сызықты тәуелді болады.
Егер сызықты тәуелсіз жүйеден бірнеше вектор алсақ, онда жаңа жүйе тәуелсіз болады.
a1, a2,…, ak сызықты тәуелді болуы үшін, оның ең болмаса бір векторы қалғандары арқылы өрнектелуі қажетті және жеткілікті.
Достарыңызбен бөлісу: |