Лабораторная работа №1 Отметка о зачёте Классы неорганических веществ



жүктеу 299 Kb.
бет1/13
Дата11.01.2022
өлшемі299 Kb.
#32378
түріЛабораторная работа
  1   2   3   4   5   6   7   8   9   ...   13
Klassy neorganicheskih veschestv


Работу выполнил и дата Работу принял

Лабораторная работа № 1 Отметка о зачёте

Классы неорганических веществ.
Цель работы. Обобщение сведений по классам неорганических веществ, углубление изученного в средней школе материала, а также усвоение современной номенклатуры неорганических веществ. Рассмотрение основных свойств простых и сложных неорганических веществ, в том числе оксидов, оснований, кислот и солей.

Подготовка к лабораторной работе. Прежде, чем приступить к выполнению работы необходимо проработать материал по химической символике, по номенклатуре и классификации неорганических соединений, изучить понятия о простом веществе и химическом элементе и основные законы атомно-молекулярного учения.
Теоретическое введение.

Простые вещества.

Элементарными или простыми веществами называются вещества, построенные из атомов одного химического элемента. Их называют гомоядерными соединениями. Они являются формой существования химических элементов в свободном виде; свойства элементарных веществ соответствуют химической природе элементов. Элементарные вещества делятся на несколько классов, основные из них: элементарные металлы (Na, К, Мg, Fe, Ni) и элементарные окислители (О2, Cl2, S, Br2). Элементарные металлы проявляют восстановительные свойства, при этом процесс отторжения электронов от атомов металлических элементов приводит к образованию элементарных положительно заряженных ионов (катионов). Самыми энергичными восстановителями являются щелочные металлы. К элементарным металлам относятся все S- элементы (кроме Н и Не), находящиеся в I A и II A группах периодической системы, все d- элементы (I B – YIII B группы) и часть р- элементов. Окислительные свойства веществ обусловлены способностью их атомов притягивать к себе электроны извне, образуя при этом элементарные отрицательно заряженные ионы (анионы). Из окислительных элементов самыми энергичными окислителями являются F2, О2, Cl2, Br2. Окислительные элементы располагаются в Y A – YII A группах. При взаимодействии элементарных восстановителей с элементарными окислителями, атомы последних восстанавливаются, а атомы восстановителей – окисляются.

Например: 4 Na + O2 = 2 Na2O

Nao – 1e = Na+ процесс окисления



О + 2 е = О2- процесс восстановления

2 Nao + O = 2 Na+ + O 2-

Na – восстановитель, О – окислитель.
Классы неорганических соединений.
Из всего многообразия сложных неорганических веществ можно выделить следующие основные классы: оксиды, основания, кислоты и соли.

Оксиды. Вещества, молекулы которых состоят из атомов кислорода и какого-либо элемента, называются оксидами. Оксиды подразделяются на основные, кислотные и амфотерные.

1.Основные оксиды - это непосредственные соединения кислорода с металлами. Им соответствуют основания. Если в молекуле оксидов атомы кислорода связаны друг с другом в анион О2-2 или О - О 2-, то такие соединения называются пероксидами.

Например: Na2O2 – пероксид натрия

К2О2 (К – О – О – К) пероксид калия.

Супероксиды – оксиды, в молекулах которых атомы кислорода связаны друг с другом в анион О-2 или О - О -. Примеры оксидов и соответствующих им оснований:

основные оксиды : основания:

Na2O оксид натрия NaOH

FeO оксид железа (II) Fe(OH)2

Fe2O3 оксид железа (III) Fe(OH)3

Если металл проявляет переменную валентность, то при названии оксида в скобках указывается валентность металла (примеры с оксидами железа).

Наиболее типичными реакциями основных оксидов являются реакции взаимодействия их с кислотными оксидами и кислотами, ведущими к образованию солей. Например:

СаО + СО2 = СаСО3

СаО + 2НСl = СаСl2 + Н2О

Поскольку реакция протекает в растворе, то правильнее выразить ее ионно - молекулярными уравнениями:

полное уравнения СаО + 2Н+ + 2Сl- = Са2+ + 2Сl- + Н2О

окончательно СаО + 2Н+ = Са2+ + Н2О

Основные оксиды обычно образуют металлы в низкой степени окисления (обычно +1, +2 и реже +3).



2.Кислотные оксиды (или ангидриды кислот) – это соединения кислорода с неметаллами, а также металлами, находящимися в высшей (или близкой к высшей) степени окисления. Этим оксидам соответствуют кислоты. Например:

оксид соответствующая оксиду кислота

SO2 - оксид серы (IV) Н2SO3 - сернистая кислота

сернистый ангидрид

SO3 - оксид серы (VI) Н2SO4 - cерная кислота

серный ангидрид

Mn2O7 - оксид марганца (VII) HMnO4 - марганцевая кислота

марганцевый ангидрид

Наиболее характерные реакции кислотных оксидов – реакции взаимодействия с основными оксидами и основаниями.

Например: SO3 + CaO = CaSO4

SO3 + 2 NaOH = Na2SO4 + H2O

SO3 + 2OH- = SO42- + H2O



3.Амфотерные – это оксиды металлов, которые могут проявлять свойства кислотных и основных оксидов. Амфотерный характер имеют оксиды некоторых металлов II, III, IV и некоторых других групп периодической системы элементов.

Например: ZnO – оксид цинка, Al2O3 – оксид алюминия, ВеО – оксид бериллия, Cr2O3 – оксид хрома (III).

ВеО + 2НСl = BeCl2 + H2O

BeO + 2H+ = Be2+ + H2O

BeO + 2Na-OH = Na2BeO2 + H2O

бериллат натрия

В водных растворах щелочей такие оксиды, как правило, дают комплексные соединения:

BeO + 2NaOH + H2O = Na2 Be (OH)4 тетрагидроксобериллат натрия

BeO + 2OH- + H2O = Be (OH)42-

Для поливалентных металлов, образующих оксиды различного состава, характер оксидов меняется, в зависимости от степени окисления металла, следующим образом:

+2 +3 +6

CrO Cr2O3 CrO3

основной ( низшая амфотерный (промежу- кислотный (высшая

степень окисления) жуточная степень степень окисления)

окисления)

Гидроксиды. Гидроксиды можно рассматривать как соединения оксидов с водой, полученные прямым или косвенным способом. К гидроксидам относятся основания, амфотерные гидроксиды, кислоты.

1.Основания – гидроксиды, молекулы которых состоят из атомов металла и гидроксильных групп. Число гидроксидов в основаниях соответствует валентности металла. Если металл проявляет переменную валентность, то она указывается в скобках при названии гидроксида.

Например: NaOH - гидроксид натрия

Fe (OH)2 - гидроксид железа (II)

Fe (OH)3- - гидроксид железа (III)

При диссоциации гидроксидов в водном растворе из отрицательных ионов образуется только гидроксид-ион (OH-).

Растворимые в воде основания называются щелочами, их образуют металлы, расположенные в I А и II А группах периодической системы (LiOH, NaOH, Ва(ОН)2 и др.). Их диссоциация происходит полностью следующим образом:

КОН = К+ + ОН-

Подобные основания относятся к сильным электролитам.

Труднорастворимые основания диссоциируют ступенчато и относятся к слабым электролитам.

Например: Cu (OH)2  CuOH+ + OH- I cтупень диссоциации

CuOH+  Cu2+ + OH- II ступень диссоциации

О силе основания можно судить по концентрации в растворе ионов ОН-. Это можно сделать с помощью индикаторов – веществ, которые меняют свою окраску при изменении концентрации ионов ОН-. Т.к. в любом водном растворе концентрация ионов ОН- и ионов Н+ связаны соотношением: ОН-•Н+ = 10-14, принято для характеристики концентрации этих ионов пользоваться величиной рН (водородного показателя). рН = - lgH+.

Характерными реакциями оснований являются реакции взаимодействия с кислотными оксидами и кислотами.

Например: Ba (OH)2 + CO2 = BaCO3 + H2O

Ni (OH)2 + 2 HNO3 = Ni (NO3)2 + 2H2O

Ni (OH)2 + 2H+ = Ni2+ + 2H2O



2.Амфотерные гидроксиды – это гидроксиды, которые проявляют и основные и кислотные свойства.

Например: Sn(OH)2 + 2HCl = SnCl2 + 2H2O

хлорид олова

Sn (OH)2 + 2H+ = Sn2+ + 2H2O

В водных растворах щелочей амфотерные гидроксиды чаще всего образуют комплексные соли.

Sn (OH)2 + 2NaOH = Na2Sn (OH)4 тетра гидроксостаннит натрия

Sn (OH)2 + 2OH- = Sn (OH)42-

Для поливалентных металлов характер гидроксидов изменяется аналогично изменению характера оксидов.

Например: +2 +3 +6

Cr (OH)2 Cr (OH)3 H2CrO4

основание (низшая амфолит (промежуточ- кислота (высшая

степень окисления) ная степень окисления) степень окисления)



3.Кислоты – вещества, состоящие из атомов водорода, способных замещаться на другие атомы или группы атомов. При диссоциации кислоты в водных растворах из положительных ионов образуется только ион водорода (ион гидроксония):

HNO3 = H+ + NO3- H+ + H2O = H3O+

гидроксоний-ион

По числу атомов водорода, способных замещаться на металл, определяют основность кислоты:

HCl, HNO3, HBr - одноосновные кислоты

H2SO4, H2CO3 - двухосновные кислоты

Н3РО4, Н3АSO4 - трехосновные кислоты

По химическому составу кислоты делятся на кислородосодержащие: H2SO3, HNO3 и т.д. и бескислородные HCl, HCN, H2S и др.

О силе кислот судят по степени их диссоциации. Сильные кислоты диссоциируют по схеме: HCl = H+ + Cl- , слабые HCN  H+ + CN-, причем многоосновные кислоты диссоциируют ступенчато:

H2S  H+ + HS- - I ступень диссоциации

HS-  H+ + S2- - II ступень диссоциации

Для определения относительной силы кислоты определяют рН раствора. С повышением степени окисления кислотообразующего элемента сила кислоты увеличивается.


Например: HClO___HClO2____HClO3____HClO4______

усиление кислотных свойств

Наиболее характерными химическими реакциями для кислот являются реакции взаимодействия с металлами, основными оксидами, основаниями, солями.

Например: Са + Н2SO4 = CaSO4 + H2

CdO + 2HCl = CdCl2 + H2O

Fe (OH)3 + 3HCl = FeCl3 + 3H2O

BaCl2 + H2SO4 = BaSO4 + 2HCl

Соли – вещества, которые можно рассматривать как продукт замещения атомов водорода в кислоте атомами металлов или группой атомов. Различают 5 типов солей: средние или нормальные, кислые, основные, двойные, комплексные, различающиеся характером образующихся при диссоциации ионов.

1.Средние соли – продукты полного замещения атомов водорода в молекуле кислоты:2СО3 - карбонат натрия

Na3РО4 - фосфат натрия

3РО4 = 3Nа+ + РО43-

2.Кислые соли – продукты неполного замещения атомов водорода в молекуле кислоты: NаН2РО4 = Nа+ + Н2РО4-

дигидрофосфат

натрия

Кислые соли дают только многоосновные кислоты, при недостаточном количестве взятого основания.



Н2SO4 + NaOH = NaHSO4 + H2O

гидросульфат

натрия

При добавлении избытка щелочи кислая соль может быть переведена в среднюю.



NaHSO4 + NaOH = Na2SO4 + H2O

3.Основные соли – продукты неполного замещения гидроксид-ионов в основании на кислотный остаток.

CuOHCl = CuOH+ + Cl-

гидроксохлорид

меди


Основные соли могут быть образованы только многокислотными основаниями

(основаниями, содержащими несколько гидроксильных групп), при взаимодействии их с кислотами.

Cu(OH)2 + HCl = CuOHCl + H2O

Перевести основную соль в среднюю можно, действуя на нее кислотой:

CuOHCl + HCl = CuCl2 + H2O

4.Двойные соли – такие, в которых электроположительная часть состоит из двух различных катионов: KAl(SO4)2 - сульфат калия-алюминия

KAl(SO4)2 = K+ + Al3+ + 2SO42-

Характерные свойства всех рассмотренных типов солей – реакции обмена с кислотами, щелочами и друг с другом.

5.Комплексные соли – соединения, образующие при диссоциации комплексные ионы (заряженные комплексы). При записи комплексные ионы принято заключать в квадратные скобки. Например:

Ag(NH3)2 Cl = Ag(NH3)2+ + Cl-

K2PtCl6 = 2K+ + PtCl62-

Cогласно представлениям, предложенным А.Вернером, в комплексном соединении различают внутреннюю и внешнюю сферы. Так, например, в рассмотренных комплексных соединениях внутреннюю сферу составляют комплексные ионы Ag(NH3)2+ и PtCl62-, а внешнюю сферу соответственно Cl- и К+. Центральный атом или ион внутренней сферы называется комплексообразователем. В предложенных соединениях это Ag+1 и Pt+4. Координированные вокруг комплексообразователя молекулы или ионы противоположного знака – лиганды. В рассматриваемых соединениях это 2NH30 и 6Cl-. Число лигандов комплексного иона определяет его координационное число. В предложенных соединениях оно соответственно равно 2 и 6.

По знаку электрического заряда различают комплексы:

1.Катионные (координация вокруг положительного иона нейтральных молекул):

Zn+2(NH30)4Cl2-1; Al+3(H2O0)6 Cl3-1



2.Анионные (координация вокруг комплексообразователя в положительной степени окисления лиганд, имеющих отрицательную степень окисления):

K2+1Be+2F4-1; К3+1Fe+3(CN-1)6



3.Нейтральные комплексы – комплексные соединения без внешней сферы Pt+(NH30)2Cl2-0. В отличие от соединений с анионными и катионными комплексами, нейтральные комплексы не являются электролитами.

Диссоциация комплексных соединений на внутреннюю и внешнюю сферы называется первичной. Протекает она почти нацело по типу сильных электролитов.

Лиганды, находящиеся во внутренней сфере комплекса связаны комплексообразователем значительно прочнее и их отщепление при диссоциации проходит лишь в незначительной степени. Обратимая диссоциация внутренней сферы комплексного соединения носит название вторичной.

Ag(NH3)2+  Ag+ + 2NH30

Вторичная диссоциация комплекса протекает по типу слабых электролитов. Алгебраическая сумма зарядов, частиц, образующихся при диссоциации комплекса равна заряду комплекса.


жүктеу 299 Kb.

Достарыңызбен бөлісу:
  1   2   3   4   5   6   7   8   9   ...   13




©g.engime.org 2024
әкімшілігінің қараңыз

    Басты бет
рсетілетін қызмет
халықаралық қаржы
Астана халықаралық
қызмет регламенті
бекіту туралы
туралы ережені
орталығы туралы
субсидиялау мемлекеттік
кеңес туралы
ніндегі кеңес
орталығын басқару
қаржы орталығын
қаржы орталығы
құрамын бекіту
неркәсіптік кешен
міндетті құпия
болуына ерікті
тексерілу мемлекеттік
медициналық тексерілу
құпия медициналық
ерікті анонимді
Бастауыш тәлім
қатысуға жолдамалар
қызметшілері арасындағы
академиялық демалыс
алушыларға академиялық
білім алушыларға
ұйымдарында білім
туралы хабарландыру
конкурс туралы
мемлекеттік қызметшілері
мемлекеттік әкімшілік
органдардың мемлекеттік
мемлекеттік органдардың
барлық мемлекеттік
арналған барлық
орналасуға арналған
лауазымына орналасуға
әкімшілік лауазымына
инфекцияның болуына
жәрдемдесудің белсенді
шараларына қатысуға
саласындағы дайындаушы
ленген қосылған
шегінде бюджетке
салығы шегінде
есептелген қосылған
ұйымдарға есептелген
дайындаушы ұйымдарға
кешен саласындағы
сомасын субсидиялау