Тапсырма:
1. Айырымдылық операторларды қасиеттерін атаңыз;
2. Шекаралық шартты тексеру әдісі арқылы жоғарыда берілген есепті шешу;
3. Айырымдылық сұлбаның байланыстарын табу.
Зертханалық жұмыс №3
Тақырыбы: Нормаланған кеңістікті аппроксимациялау.
Мақсаты: Нормаланған кеңістікті аппроксимациялау арқылы теңдеуге арналған аралас есептің шешуінің блок-сұлбасын жасау.
Абсолютті (сөзсіз) аппроксимация кез-келген заң бойынша ешбір шартсыз байланыспаудың болғанда нөлге ұмтылатын аппроксимация түрін айтады.Шартты аппроксимацияда кеңістік және уақыт бойынша қадамдар өлшемдеріне кейбір шарттар қойылады. (7) айырымдылық схемасы орнықтылықтанған деп аталады,егер оның шешімі кіретін мәліметтермен үзіліссіз байланыста болса, яғни кіретін мәліметтер шамалы аз өзгерсе соған сай шешімнің мәндері де аздап өзгереді. Орнықтылық айырымдылық схемасының түрлі қателіктерге сезімталдығын сипаттайды.
Теорема: Егер (6) негізгі дифференциалдық есептің шешімі бар болса, ал (7) айырымдылық схемасы берілген (6) шешімді орнықтылайды және аппроксициялайды, сонда айырымдылық шешімі дәлдікке қосылады.
[1] - [5], кіріспе, 5 - тарау
Шекаралық шарттың бірінші ретті аппроксимациясы жоғарыда көрсетілгендей қасиетке ие болады. Т.с.с. ішкі байланысуының аппроксимациясы шекаралық байланысуы тәртібі аппроксимациясы орындалады. Аппроксимациялық ретінің сетканы түгел байламын глобальді аппроксимациялық реті деп аламыз.
Аппроксимация ретті жоғарлауының шекаралық шартының белгілі бір әдісі екінші ретін дифференциалдық есеп болып табылады:
Егерде, белгілі сұлбаның алгоритімі есептің шешілуі жаңа уақыттың қабаты мен аппроксимациялық шекараның шартын қабылдамайды, бірақ принципиалдығы өзгермейді. САТЖ өзінің үш-диагональдығын жоғалтады егерде, белгісіз сұлба қолданылғанда(бірінші және екінші теңдікте үшеуі белгісіз болады). Үшінші теңдікті оңай алып тастау жолын қарастырамыз, яғни екінші және үшінші теңдіктерді комбинацияның сызықтық жолымен алуға болады. Бұл жағдайда диагональды матрицаның бұзылуы, сонымен қатар прагон әдісі де бұзылады.
Оны оңай жолымен қарастырайық, аппроксимациялық ретті шартын күшейтпелігінсіз аппроксимациялық қтынастың бйланыс саны. Иллюстрациялық подходты мынандай түрде көреміз.
Мысалы 2.1.
Үшінші алғашқы-шектік есептің параболалық теңдеуінде, құрамында конвекцияланған мүшелерінің құрамдамасы,(туындының пропорционалы ), іздеу функциясының шығу көздері, мүшелерін құрайды
(2.21)-(2.24) Шешімі.
Шекті-әртүрлігі сұлбасының теңдеуі, сетканың Шекті-әртүрлігінің белгісіз ішкі байланыста көреміз, (2.21):
(2.25)
Егер, бірінші тәртіптегі шекарлық шарттың туындысын (2.22) және (2.23) аппроксимациялық сұлба бойынша аламыз (оң және сол Шекті-әртүрлігін қою-арқылы)
Онда шекаралық шарттар бірінші тәртіп бойынша аппроксимацияланады және глобальді тәртібі, бірінші тәртіпке тең , барлық қалған байланыс аппроксимациялық тәртіп кеңістігі орын ауысуы екіге бөлінеді. Аппроксимациялық тәртіпті сақтауға және екіге теңдігін біз шекаралық байланысуда дәл есептелінген теңдеуіне қоямыз сонда аумақ нүктесінде x=0 болғанда Тейлор қатарына ауыспалы x үшінші туындыға шейін ,- аналогтық қатарының нүктелік ауданының x=l деп аламыз(функциясының жазылуы бойынша u(x,t) шекаралық байлаудан бірінші туынды алынады және екіншіні х бойымен аламыз):
(2.26)
. (2.27)
Әрі қарай екінші мәннің туындысын шекаралық байлануына қоямыз, дифференциалдық теңдеуін аламыз (2.21):
Алынған өрнектен шығады (2.26), бірінші туындының мәнін шекаралық ретімен, аламыз(2.27)
Қою аркылы яғни (2.22), және (2.23) аппроксимациялық кезінде сәйкес қосылуы алынғанда шекаралык байлануын қараймыз(осыдан алгебралык теңдеудің шекаралық байланысуын аламыз, осының әрқайсысындаекеуі белгісіз болады:
(2.28)
(2.29)
Осылайша,(2.28) - Шекті-әртүрлігінің аппроксимациясының шекаралық теңдеуінің үш түрі белгілі (2.22) сол жақ шекарада x=0 болады, яағни (2.29) - Шекті-әртүрлігінің аппроксимациялық үшінші-текті теңдеудің он жақ шекарада (2.23) x=l аппроксимацияның сол жақ ретін сақтайды, осылайша Шекті-әртүрлігінің аппроксимациясы (2.25) және дифференциалдық теңдеуінде де (2.21).
Жаза отырып шекаралық шекті-әртүрлігінің теңдеуінде (2.28), (2.29) сетканың функцияснда екінші мәнді ұстанады, алгебралық теңдеу (2.25),
(2.30)
Достарыңызбен бөлісу: |