Шышында да, әр (n, r)-теруін r! әдіспен реттеуге болады, яғни -ді r! рет -ге қарағанда r! рет аз. Бұл формуладан =.
4-тұжырым. .
Шынында да Х={x1,…,xn} жиынының элементтерінен құрылған әрбір қайталанба (n, r)- В теруі үшін, r нөл мен n-1 1-ден тұратын (i-1)-ші және i бірлердің (мұндағы 2 i n-1) арасындағы нөлдердің саны В теруіндегі xi элементтерінің санына тең, ал бірінші бірдің алдындағы нөлдердің саны В-ға енетін xi элементтерінің санына тең болатын ұзындығы (В) болатын векторды сәйкестендіруге болады.
Мысалы Х={1, 2, 3, 4}, n=4, r=6 болса, Егер В={2, 2, 3, 3, 3, 4} - (4, 6)-қайталанба теру болса онда (В) = 100100010 болады. Екінші жағынан егер (В1)=110010000, онда В1 = {3, 3, 4, 4, 4, 4}.
Бұл қайталанба (n, r)-теруімен n-1 бір және r нөлден тұратын вектор арасындағы сәйкестік. n-1 бірден және r нөлден құралған n+r-1 мөлшерлі векторлар саны тең.
= = .
Достарыңызбен бөлісу: |