124
пор
2
.
таб
/2
болатындықтан,
мəнін осы екі теңдеулерден
шығарып тастап, аламыз:
пор
.
(4.70)
Міне осы шама соқтығысушы бөлшектің табалдырық кинетикалық
энергиясы болып табылады. Осыдан бастап берілген эндоэнергетикалық
процестердің энергетикалық мүмкіншілігі туады.
(4.70) формула ядролық жəне атомдық физикада өте маңызды рөл
атқарады. Осы формула арқылы көптеген эндотермиялық процестердің
табалдырығын анықтауға мүмкіндік туады, сонымен қатар оларға сəйкес | |
энергияларын табуға болады.
§ 4.7. Сығылмайтын сұйықтардың механикасы
Механиканың бұл тарауында сұйықтар қозғалысының заңдарын зерттеу
барысында сұйықтарды тұтас үзілмейтін орта деп қарастырады. Сұйықтың
тығыздылығы қысымнан тəуелсіз, сондықтан сұйықты
сығылмайтын орта
деп қарастырады жəне ортаның тығыздылығы барлық көлем бойынша
бірдей. Сұйықтың қозғалыс ағысының кинематикалық сипатын
Эйлер
тəсілімен келтірейік: таңдалынып алынған санақ жүйесінде сұйық үшін
белгілі бір жылдамдық беріледі, яғни сұйықтың əрбір нүктесінің –
жылдамдығының
t-уақытпен r-радиус-векторынан тəуелділігі беріледі.
Көптеген жағдайлар үшін ағып жатқан сұйықтың жеке-жеке қабаттары
арасындағы үйкеліс күші елеусіз аз болғандықтан, сұйықты идеалды
(шынайы) деп санауға болады (ішкі үйкеліссіз).
Ток түтігі мен сызықтары
Тоқ сызығы – əрбір нүктесінде өзіне жүргізіліп жанамасының бағыты
бойынша сұйықтың осы мезгіліндегі жылдамдық
векторымен бірдей
түсетін сызық. Осы сызықтар
ток сызықтары деп аталады. Ток сызықтарын
сызықтың сандарының өздеріне перпендикуляр орналасқан жəне өздері кесіп
өтіп жататын сол ауданшаның ауданына қатынасы сұйық ағысының
жылдамдығы жоғары жерде көбірек, ал сұйық ағыны баяулау жерде азырақ
болатын етіп жүргізіледі.
Ток түтігі - сұйықтың ток сызықтарымен
шектелген бөлігі.
векторының модуліне пропорционал. Сонымен ток
сызықтарының бағыты
векторының бағытымен сəйкес. Осындай көрініс
125
сұйықтың əртүрлі нүктесіндегі вектордың модулі мен бағыты туралы мəлімет
алуға мүмкіндік береді, яғни оның қозғалысын сипаттайды. Жылдамдық
көбірек жерде сызықтар көбірек жəне керісінше.
Қалыптасқан, яғни стационар ағыс кезінде
-векторы t-дан тəуелсіз
жағдайда, ток сызықтарының түрі өзгеріссіз қалады жəне ток сызықтары
сұйықтағы бөлшектердің траекториясымен ток сызықтары сəйкес келеді.
Ток сызықтарымен қалыптасқан сұйықтың беті ток сызықтары
тұйықталған контурдың барлық нүктелері арқылы өткізілген – оны
токтың
түтігі деп атайды. Сұйықтың стационар ағысында оның бөлшектері
қозғалыс барысында ток түтігін кесіп өтпейді.
Үздіксіздік ағынның теңдеуі
Енді ток түтігі ішіндегі қалыптасқан
ағысты қарастырайық. Ток түтігін оның кез
келген көлденең қимасының барлық нүктелері
үшін сұйық жылдамдығы бірдей болатындай
етіп
алайық. 4.16-суреттен
∆ -уақыт
аралығында
∆
ауданның
көлденең
қимасынан
∆ -cұйықтың көлемі ағып өтеді.
Сұйық сығылмайтын болғандықтан, ток
түтігінің
жəне
көлденең қималараның арасындағы сұйықтың массасы
өзгеріссіз қалады (4.16-сурет). Олай болса,
жəне
көлденең қималар
арқылы өтетін сұйықтың көлемі
∆ -уақыт аралығында бірдей. Осыдан келесі
өрнек
шығады. Басқаша айтқанда сығылмайтын сұйық үшін
шамасы бір ток түтігінің кез келген қимасы үшін бірдей:
const (4.71)
Бұл қатынасты
үзіліссіз ағынның теңдеуі деп атайды.
Бернулли теңдеуі
Біртекті ауырлық өріс күшіндегі сұйықтың қалыпты ағысын
қарастырайық. Ағып жатқан сұйық үшін оған қажетті кейбір маңызды
параметрлер арасындағы қатынастарды энергия сияқты түсінік арқылы
табуға болады. Осындай мақсат үшін сұйықтың ойша бір бөлігін алайық, бұл
бөлік
∆ уақыт моментінде тар ток түтігінің көлемін толтырады, 1- жəне 2-
нормалды қималар арасындағы (4.17-сурет).
∆ моменті үшін тар ток
түтігінің ішіндегі сұйық қиманың бағытына сай түтік бойымен қозғалады,
4.16-сурет
126
бұл қозғалыс суретте қос нұсқағышпен
келтірілген жəне 1' мен 2
' қималар арасында
орналасқан.
(4.54) теңдеуіне сай
∆ уақыт
аралығында сұйықтың осы бөлігінің толық
механикалық энергиясының өсімшесі тең:
∆
сырт
тос
, (4.72)
сырт
тос
қысым күшінің атқаратын
жұмысы. Міне осы тосын күштерге жатады. Жəне қысым күштері түтіктің
осы бөлігіне перпендикуляр болғандықтан жұмыс атқармайды. Тек
1- мен 2-
қима арасына əсер ететінқысым күштері ғана жұмыс атқарады. Бұл жұмыс
тең:
сырт
тос
∆
∆ .
Ағынның үзіліссіздігінен келесі теңдеу шығады: яғни 1
-1' жəне 2-2'
қималарының арасындағы көлем бірдей деген сөз:
сырт
тос
∆ .
(4.73)
Сұйықтың ағысы қалыпты (стационарлы), сондықтан 1
'- мен 2-қиманың
арасындағы ток түтігіндегі сұйық бөлігінің толық механикалық энергиясы
өзгермейді. Олай болса, қарастырып отырған сұйықтың бөлігі үшін
∆ −
энергияның өсімшесін 2
-2' мен 1-1' элементтерінің айырымы ретінде
қарастырған жөн:
∆
ρ∆
ρ∆ g
ρ∆
ρ∆ g
,
(4.74)
мұндағы,
ρ сұйықтың тығыздылығы.
(4.72) теңдеуіне сəйкес (4.73) пен (4.74) өрнектерді бір-біріне теңестіріп,
сонан кейін оны
∆
ға бөліп, құраушы мүшелерін топтастырып, теңдеуді
аламыз:
ρ /2
ρg
ρ /2
ρg
.
1 мен 2-қималары кез келген жолмен алынғандықтан, осы формуланы
төмендегідей келтіруге болады:
ρ /2
ρg
,
(4.75)
мұндағы, шамалардың бəрі бір ток сызығына жатады. Əрбір сызық үшін
осындай өзінің константасы, яғни тұрақтысы болады.
4.17-сурет
Достарыңызбен бөлісу: |