Шешуі. Алдымен нүкте үдеуінің проекцияларын табамыз. Ол үшін есептің шартында берілген қозғалыс теңдеулерінен уақыт бойынша екі рет туынды аламыз:
.
Нүкте қозғалысының дифференциалдық теңдеулерін пайдалану арқылы күштің координаттар өстеріндегі проекцияларын табамыз:
.
Сан мәндерін орындарына қойып, нүктеге әсер етуші күштің проекцияларының нүкте координаттарына тәуелділігін анықтаймыз:
.
Нүкте динамикасының екінші есебі. Нүкте динамикасының екінші есебін шешу екінші ретті үш дифференциалдық теңдеулер жүйесі (3.7)-ні интегралдауға келтіріледі. Дифференциалдық теңдеулердің мұндай жүйесінің жалпы шешімі әлі табылмаған. Сондықтан біз ол жүйені шешудің жалпы сұлбасын көрсетіп өтейік. Бізге массасы m-ге тең материялық нүктенің берілген күші әсерінен болатын қозғалысының дифференциалдық теңдеулері (3.7) берілсін:
Достарыңызбен бөлісу: |