Бірінші мысал. Қорапта ақ,9 қара және қызыл бірдей шарлар салынған. Қораптан кез-келген бір шар алынады. Сонда ақ шар пайда болуының ықтималдылығы қандай? Шешуі



жүктеу 47,97 Kb.
Дата06.04.2023
өлшемі47,97 Kb.
#42040
эконометрика ыктималдылык 8-1


Бірінші мысал. Қорапта 4ақ,9 қара және 7 қызыл бірдей шарлар салынған. Қораптан кез-келген бір шар алынады.Сонда ақ шар пайда болуының ықтималдылығы қандай?
Шешуі: А-ақ шар пайда болуы болсын.Бұл тәжірибеде элементарлық оқиға дегеніміз қораптан кез-келген бір шар алу.Шарлар бірдей болғандықтан бұл оқиғалар тең мүмкінді және өзара үйлесімсіз. Элементарлық оқиғалардың жалпы саны осы қораптағы шарлар санына тең n=20,ал А оқиғасына қолайлы элементарлық оқиғалар саны қораптағы ақ шарлар санына тең. Сондықтан ықтималдықтың анықтамасы бойынша


Екінші мысал: Ө, Н, С, Е, Д, У әріптері бөлек карталарға жазылған. Содан кейін карталар араластырып кез-келген ретпен бір қатарға орналастырылған. Сонда сәндеу сөзінің пайда болуының ықтималдығы қандай?
Шешуі: Берілген алты карталардың бір қатарға әртүрлі орналасуларының бір-бірімен айырмашылығы олардың қандай ретпен орналасқандығында болады.Сондықтан ондай орналасулардың жалпы саны мына формуламен анықталады, яғни
n=
Берілген алты картаның әрбір орналасу комбинацияларын оқиға ретінде қарастырсақ, онда олар тең мүмкінді, үйлесімсіз оқиғалар болады. Ал бізге қолайлы элементарлық оқиғалар саны m=1.
Себебі карталар әртүрлі комбинациямен орналасқанда “Сәндеу” сөзі бір-ақ рет кезігеді.Сонда

Үшінші мысал. Ұйымда 6 ер адам, 4 әйел адам жұмыс істейді. Табельдегі нөмірлері бойынша 7 адам таңдап алынды. Таңдап алынған адамдардың ішінде 3 әйел бар болуының ықтималдығын табу керек.
Шешуі: Табельдегі нөмірлері бойынша барлығы 10 адамнан 7 адам таңдап алудың жалпы саны 10 элементтен 7 элемент бойынша алынған терулер саны сияқты есептелінеді, яғни

n=

Ал 3 әйелді табельдік нөмерлері бойынша 4 әйелдің ішінен таңдап алудың саны
m =C
Сондай-ақ 6 ер адамнан 4 ер адам таңдаудың саны
m =C
Енді көбейту ережесін пайдалансақ таңдап алынған 7 адамның ішінде 3 әйел 4 ер адам болу мүмліндіктерінің жалпы саны тең.
Сонымен анықталғалы отырған ықтималдық


Төртінші мысал. Екі 4 және 5 цифрларының көмегімен әртүрлі үш орынды қанша сан жазуға болады?
Шешуі: Барлығы екі 4 және 5 цифрлары берілгендіктен іздеп отырған комбинацияларды бірден жазуға болады: 444, 445, 454, 544, 555, 554, 545, 544 барлығы 8 сан болады. Ал осы жауапты қайталанбалы орналастыруды пайдаланып та алуға болады.

Жауабы: Барлығы 8 сан жазуға болады.

Бесінші мысал: Екі жәшікке бөлшектер салынған.Бірінші жәшікте 10 бөлшек, оның 3-уі стандартты, екіншісінде –15 бөлшек онда 6 стандартты бар. Әрбір жәшіктен бір-бірден кез-келген бөлшек алынды.Алынған екі бөлшектіңде стандартты екенінің ықтималдығын табу керек.
Шешуі: Белгілеу енгізелік. А-бірінші жәшіктен алынған бөлшек стандартты, В-екінші жәшіктен алынған бөлшек стандартты. Сондықтан /10, /15. Алынған екі бөлшекте стандартты болу үшін оқиғасы пайда болуы керек. Бұл екі оқиғада үйлесімді, себебі екеуі бірдей пайда бола алады, сондай-ақ бұл оқиға тәуелсіз, себебі олардың пайда болуы бір-біріне байланыссыз. Сондықтан

Алтыншы мысал: Дискретті кездейсоқ шама үлестірім қатарымен берілген

Х 2 4 5 6 8

p 0,1 0,2 0,3 0,1 0,3


М(Х) =2*0,1+4*0,2+5*0,3+6*0,1+8*0,3=5,5
М(Х), D(Х) , тарды табу керек.
Шешуі:
Енді D(Х)-ті есептеу үшін мына шаманың үлестірім таблицасын құрамыз

4 16 25 36 64

p 0,1 0,2 0,3 0,1 0,3

М( )=4*0,1+16*0,2+25*0,3+36*0,1+64*0,3=33,9
Д(Х)=33,9- (5,5)²= 3,65

Жетінші мысал: Үлестірілім заңы заңы белгілі болғанда Х кездейсоқ шаманың дисперсиясын тап.

Х 6 8 7

p 0,3 0,5 0,8



М (Х)= 6*0,3+8*0,5+7*0,8=11,4
[х₁ -М(Х)]²= 29,16
[х₂-М(Х)]²= 11,56
[х₃-М(Х)]²= 19,36
Д(Х)=29,16* 0,3+11,56*0,5+19,36*0,8=30,02
Сегізінші мысал. Қорапта бірдей 5 бұйым бар. Оның үшеуі боялған. Қораптан кез-келген екі бұйым алынды:
1) алынған екі бұйымның біреуі боялған бұйым болуының ықтималдығын табу керек;
2) алынған бұйымның екеуі де боялған бұйым болуының ықтималдығын табу керек.
Шешуі: 1) қорапта 5 бұйымның екеуін барлығы n=C тәсілмен алуға болады, ал алынған екі бұйымның біреуі боялған болса, сол бір боялған, бір боялмаған бұйымдарды сәйкес m =C m =C тәсілмен алуға болады. Сонда екі бұйымның бірі боялған болудың барлық қолайлы элементарлық оқиғалар саны


Сөйтіп Р=
жүктеу 47,97 Kb.

Достарыңызбен бөлісу:




©g.engime.org 2025
әкімшілігінің қараңыз

    Басты бет
рсетілетін қызмет
халықаралық қаржы
Астана халықаралық
қызмет регламенті
бекіту туралы
туралы ережені
орталығы туралы
субсидиялау мемлекеттік
кеңес туралы
ніндегі кеңес
орталығын басқару
қаржы орталығын
қаржы орталығы
құрамын бекіту
неркәсіптік кешен
міндетті құпия
болуына ерікті
тексерілу мемлекеттік
медициналық тексерілу
құпия медициналық
ерікті анонимді
Бастауыш тәлім
қатысуға жолдамалар
қызметшілері арасындағы
академиялық демалыс
алушыларға академиялық
білім алушыларға
ұйымдарында білім
туралы хабарландыру
конкурс туралы
мемлекеттік қызметшілері
мемлекеттік әкімшілік
органдардың мемлекеттік
мемлекеттік органдардың
барлық мемлекеттік
арналған барлық
орналасуға арналған
лауазымына орналасуға
әкімшілік лауазымына
инфекцияның болуына
жәрдемдесудің белсенді
шараларына қатысуға
саласындағы дайындаушы
ленген қосылған
шегінде бюджетке
салығы шегінде
есептелген қосылған
ұйымдарға есептелген
дайындаушы ұйымдарға
кешен саласындағы
сомасын субсидиялау