Сабақтың жоспары: Жер пішіні және оның өлшемдері Жер бетінің бедері Жердің ішкі құрылысы



жүктеу 66,04 Kb.
бет3/3
Дата12.09.2020
өлшемі66,04 Kb.
#31399
түріСабақ
1   2   3
дәріс 2 жердің пішіні Microsoft Word

4. Жердің физикалық қасиеттерін зерттеу нәтижесінде оның өзіндік ерекшеліктерін біліп қана қоймай, сонымен бірге жер қойнауында орналасқан әр түрлі пайдалы қазбаларды іздеп табуға болады.

Жердің физикалық қасиеттеріне ауырлық күші, тығыздығы, қысымы, магниттік, жылулық және т. б. қасиеттері жатады.

Жер бетінде жердің өзіне қарай бағытталған центрге тартқыш және центрден сыртқа қарай бағытталған центрден тепкіш күштерінің болатындығы үнемі байқалады. Осы күштердің ортақ әсері ауырлық күшін көрсетеді. Ауырлық күшінің үдеу шамасы жердің құрылысы мен сыртқы пішінінің өзгерістеріне қарай анықталады; ауырлық күші экваториалық аймақтармен салыстырғанда полярлық аймақтарда көбірек; оның үдеу шамасы полюстен экваторға қарай біртіндеп азаяды (0,5%). Бірақ кейбір аймақтарда бұл заңдылық орындалмайды. Жеңіл салмақты жыныстардан құралған аудандарда ауырлық күші азаяды (теріс аномалия), ал салмағы ауыр жыныстардан құралған аудандарда ауырлық күші арта түседі (оң аномалия).

Үдеу шамасы жер қойнауына тереңдеген сайын әр түрлі өзгеріп отырады. Мысалы, жер бетінде 982 см/с2, 2900 км-ге дейінгі тереңдікте 1037 см/с2 дейін өзгереді; кейінірек кенеттен тез төмендеп, 6000 км тереңдікте-126 см/с2 дейін жетеді, ал жердің центрінде нөлге тең, болады.

Жердің ауырлық күшін зерттеу жұмыстары оның орташа тығыздығын анықтауға мүмкіндік берді (5,52 г/см3).

Шөгінді тау жыныстарының орташа тығыздығы 2,4—2,5 г/см3, граниттердің — 2,7 г/см3, базальттардың— 2,9—3,0 г/см3 екендігі белгілі. Ал жалпы жер қыртысын құрайтын тау жыныстарының орташа тығыздығы 2,7— 2,8 г/см3 шамасында деп саналады. Жердің орталық бөлігін құрайтын заттардың тығыздығы — 12,3—12,5 г/см3 шамасында болады. Жердің центріне қарай тығыздықтың артуымен қатар, қысым дәрежесі де ұлғая түседі. Жердің орталық бөлігінде қысым күші 3,5 млн атмосфералық қысым дәрежесіне дейін жетеді.

Магниттік қасиет тек жеке минералдарға ғана емес, жалпы жер планетасына тән ортақ қасиет. Сонымен, Жер алып магнит. Оның өзіндік магнит полюстері және магнит өрісі болады. Жердің магнит полюстері географиялық полюстермен сәйкес келмейді. Осыған байланысты, компастың магнит стрелкасының көрсеткішінде магниттік ауытқу байқалады.

Магниттік ауытқу деп, белгілі бір бақылау нүктесінде компастың магнит стрелкасы мен географиялық меридиан арасындағы бұрышты айтады. Магниттік ауытқулар батыс және шығыс бағыттық болып ажыратылады. Бірдей бағыттағы ауытқуларды біріктіретін сызық — изогондық сызықтар деп аталады.

Магнит стрелкасының горизонт сызығына қарай құлау бұрышы магниттік еңкею, ал магниттік еңкіштігі бірдей нүктелерді біріктіретін сызық изоклинальдық сызықтар деп аталады. Магнит полюстерге жақындаған сайын, компастың магнит стрелкасының еңкіштігі арта түседі, ал магнит полюстерінде магнит стрелкасы тік бағытта болуға ұмтылады.

Жердің магнит өрісі кернеулік күшімен сипатталады. Кернеулік күші экватордан магнит полюстері бағытында арта түседі. Магниттік ауытқу және онын еңкіштік дәрежесі, сол сияқты магнит өрісінің кернеулік күші уақытқа және орнына байланысты нормалық шамадан ауытқып, ерекше жағдайда болуы мүмкін. Мұндай ерекше ауытқулар магниттік аномалиялар деп аталады. Осы аномалиялар жалпы жердің кұрылыс ерекшеліктерімен және жер қыртысында кездесетін темірлі тау жыныстарының орасан зор массасының белгілі бір тереңдікте шоғырланып жиналған орнына сәйкес келген.

Мұхиттар түбінің магнит өрісі континенттік магнит өрісінен бөлек. Олар бір-бірінен өзіндік ерекшеліктерімен ажыратылады. Мұхиттар түбінде магниттік аномалиялар жолақ-жолақ болып орналасады. Олар оң және теріс зарядталған аномалиялар түрінде мұхиторталық жоталарға параллель бағытта жүздеген километрге созылып жатады. Барлық өлшемдері жағынан бірдей, ұқсас аномалиялар орталық аномалияның екі жарында бірдей қашықтықта кезек алмасып, симметриялы түрде орналасатындығы анықталды. Бұл жағдай геомагниттік шкалаға сүйене отырып, мұхит түбінің мұхиторталық жотаның екі жағына қарай бірдей кеңею дәрежесін анықтауға мүмкіндік береді.

Жердің жылулығы. Жердің жалпы жылулық режимі екі жағдайға байланысты, яғни Күннен бөлінген жылулыққа; жер қойнауындағы жылулық мөлшеріне қарай қалыптасады. Жер бетіндегі ең негізгі жылулық көзі — Күн энергиясы, ал Жер қойнауынан бөлінетін жылудың жер бетінде атқаратын ролі шамалы ғана. Әрбір минут сайын жер бетінің әрбір шаршы сантиметріне (1 см2) Күн сәулесі арқылы келетін жылу мөлшері шамамен ~8,13 Дж шамасында болады екен. Бұл цифр әр уақытта да тұрақты сан есебінде қабылданған. Жалпы алғанда, Жер Күннен минутына 1019 Дж мөлшерінде сәуле энергиясын алады. Жер бетіндегі жылу мөлшері оның жеке аудандарының Күннен түскен жарық мөлшерін қабылдау мүмкіндіктеріне байланысты.

Күннен түскен жарық сәулесін қабылдау немесе оны кейін қайтару мөлшері негізінен құрлық пен суға, ауа және мұхит ағындарына, бедер пішіндері мен өсімдік жамылғыларына байланысты болады.

Күн энергиясының мөлшеріне қарай әр түрлі әрекеттердің нәтижесінде жер бетінде сан-алуан өзгерістер байқалады (су айналымы, су мен желдің әсерінен жер бетінің бұзылуы, тау жыныстарының үгілуі және т. б.). Жер бетінде тіршіліктің пайда болуы және органикалық дүниенің даму ерекшеліктері де Күн энергиясына тікелей байланысты.

Жердің ішкі қойнауындағы жылу энергиясының көзі ретінде — радиоактивтік элементтердің ыдырауы, жерді құрайтын заттардың гравитациялық жіктелуі және т. б. процестер кезінде бөлінетін энергия көздерін атауға болады. Әсіресе, радиоактивтік ыдырау кезінде бөлініп шығатын энергия мөлшері орасан зор.

Радиоактивтік элементтер (уран, торий, калий және т. б.) көпшілік жағдайда жер қыртысында кездеседі, ал кейде аз мөлшерде жердің терең қабаттарында да болуы мүмкін. Қейбір есептеулер бойынша, жер қойнауында радиоактивтік ыдырау процестеріне байланысты бөлінетін энергия мөлшері (1,4—3,0)-1021 Дж шамасында болады, сол секілді гравитациялық энергия мөлшері де осы шамалас деп саналады.

Жер бетінде жыл бойы температураның Күн сәулесі әсерінен өзгеруі өте жоғары дәрежеге дейін көтеріледі. Мысалы, құмды далада 100°С-қа дейін жетеді.

Жер бетінен оның ішкі қабатына қарай тереңдеген сайын температура төмендей береді. Ал белгілі бір тереңдікте температура тұрақты болып, өзіндік белдеу құдайды. Бұл белдеуде температура жыл бойы тұрақты және белгілі бір ауданның орташа жылдық температурасына тең шамада болады. Мысалы, Москвада тұрақты температуралық белдеу — 20 м-лік тереңдікте (4,2°С), Парижде — 28 м-лік тереңдікте (11,83°С) байқалады. Жалпы алғанда Күн сәулесі жердің 20—30 м-дей тереңдігіне дейін ғана әсер етеді.

Тұрақты температура деңгейінен төмен қарай, жердің ішкі жылулық энергиясы әсерінен, температура арта бастайды. Мысалы, Солтүстік Каспий маңайында бұрғыланған скважинаның 500 м-лік тереңдігіндегі температура 42,2°С, 1000 м-лік тереңдікте — 55,2°С, 1500 м— 69(9°С, 2000 м —80,4°С, 2500 м —94,4°С, 3000 м — 108,3°С-қа дейін көтеріледі. Түрақты температура деңгейінен төмен қарай, температура шамасынын, 1°С-қа көтерілуі үшін жеткілікті тереңдік (немесе метр есебімен алынған қашықтық) — геотермиялық саты деп аталады.

Жер қыртысында оның шамасы тау жыныстарының құрамы мен құрылыс ерекшеліктеріне немесе жатыс жағдайларына байланысты бірнеше метрден 200 м-ге дейінгі аралықта өзгереді. Геотермиялық сатының орташа шамасы — 33 м. Мысалы, вулкандық аймақтарда геотермиялық сатының минимал шамасы — 2—3 м, Солтүстік Қавказда — 12 м, Москва маңайында — 38,4 м, Кривой Рогта — 112,5 м, Қарелияда — 100 м және одан да жоғары болып кездеседі.

Геотермиялық сатыға кері ұғым геотермиялық градиент деп аталады. Геотермиялық градиент деп, жер қойнауының әрбір 100 м-іне тереңдеген сайынғы температураның (градус есебімен) өзгеру шамасын айтамыз. Геотермиялық градиенттің орташа шамасы (әрбір 100 м-ге) 3°С деп есептеледі.

Жер қойнауының температуралық режимі туралы негізгі мәліметтер шахталар мен бұрғылау скважиналарында жүргізілген геотермиялық тікелей өлшеу жұмыстарының нәтижесінде алынады. Мысалы, Кола түбегінде бұрғыланған өте терең скважина арқылы кристалдық тау жыныстарының температурасын тікелей өлшеу жұмыстарының нәтижесі мына төмендегідей: 7 км тереңдікте — 120°С (жоба бойынша 60—70°С болу мүмкін деп болжанған еді); 10 км тереңдікте — 180°С; 12 км тереңдікте — 200°С-тан астам екендігі анықталды.

Ал <9,5 км тереңдікте шөгінді қабатты тесіп өткен “Берта Роджерс” (АҚШ) атты бұрғылау скважинасындағы температура — 243°С-қа дейін жеткен.

Кейбір есептеулер бойынша геотермиялық саты 20_км-лік тереңдікке дейін сақталады, ал одан тереңірек қабаттарда температураның өсу дәрежесі кенеттен баяулап, тез төмендейді.

В. А. Магницкийдің есебі бойынша температураның . тереңдікке қарай өзгеру дәрежесі континенттер мен мұхиттар түбінде төмендегідей болады:

100 км тереңдікте температура — 1300°С (вулкандық лавалардың температурасы осыған жақын деп санала-ды). 400 км тереңдікте температура — 1700°С, 2900 км — 3500°С, 5000 км — 5000°С болады деп есептеледі.

Кейбір ғалымдардың пікірлері бойынша жердің орталық ядро бөлігінде температура 5000°С және одан да жоғары болуы мумкін деп саналады.

Е. А. Любимованың есептеуі бойынша жердің максимал температурасы 2000—2500 м-дей тереңдікте 4000°С шамасында болады. Ал одан ары тереңдеген сайын, тем-пература біртіндеп кеми бастайды. Жердің орталық бөлігінде температура — 2600°С шамасында болады деп жорамалданады. Әрине, бұл жерде температураның тереңдікке байланысты өзгеретіні туралы басқа да пікірлер бар екендігін ескеру қажет.



Жер қойнауының температуралық режимін зерттеп-білу шахталар тұрғызуда және терең қабаттарды бұрғылау жұмыстарын жүргізуде өте қажет. Егер шахтадағы температураны білу шахтерлердің жұмыс жағдайын жақсарту үшін қажет болса, ал бұрғылау скважинасындағы температураның өзгерістерін білу бұрғылау технологиясын жетілдіруге мүмкіндік береді.

Қазіргі кезде жер астындағы ыстық сулар мен ыстық. су буларын тұрмыс қажетіне жарату, мысалы, елді мекендерде үйлерді жылыту үшін (Рейкьявик—Исландия) немесе геотермиялық электростанциялар тұрғызу (Камчатка — ТМД, Италия) мақсатында пайдаланылады
жүктеу 66,04 Kb.

Достарыңызбен бөлісу:
1   2   3




©g.engime.org 2024
әкімшілігінің қараңыз

    Басты бет
рсетілетін қызмет
халықаралық қаржы
Астана халықаралық
қызмет регламенті
бекіту туралы
туралы ережені
орталығы туралы
субсидиялау мемлекеттік
кеңес туралы
ніндегі кеңес
орталығын басқару
қаржы орталығын
қаржы орталығы
құрамын бекіту
неркәсіптік кешен
міндетті құпия
болуына ерікті
тексерілу мемлекеттік
медициналық тексерілу
құпия медициналық
ерікті анонимді
Бастауыш тәлім
қатысуға жолдамалар
қызметшілері арасындағы
академиялық демалыс
алушыларға академиялық
білім алушыларға
ұйымдарында білім
туралы хабарландыру
конкурс туралы
мемлекеттік қызметшілері
мемлекеттік әкімшілік
органдардың мемлекеттік
мемлекеттік органдардың
барлық мемлекеттік
арналған барлық
орналасуға арналған
лауазымына орналасуға
әкімшілік лауазымына
инфекцияның болуына
жәрдемдесудің белсенді
шараларына қатысуға
саласындағы дайындаушы
ленген қосылған
шегінде бюджетке
салығы шегінде
есептелген қосылған
ұйымдарға есептелген
дайындаушы ұйымдарға
кешен саласындағы
сомасын субсидиялау