1. Әрбір тәуелсіз 200 кездейсоқ шаманың дисперсиялары 4-тен аспайды. Осы кездейсоқ шамалардың арифметикалық орташа санының олардың математикалық үміттерінің арифметикалық орташа санымен ауытқуының 0,3-тен артпауының ықтималдығын бағалау керек.
2. Жұмыс істеуінің ұзақтығын анықтау үшін берілген партиядан кез-келген 150 радиошам алынды. Радиошамның жұмыс істеу ұзақтығының орташа квадраттық ауытқуы 6 сағаттан аспайды. Алынған 150 радиошамдардың жұмыс істеуінің орташа ұзақтығының берілген партиядағы барлық шамдардың жұмыс істеуінің орташа ұзақтығынан айырымының абсолют шамасы 5 сағаттан кем болуының ықтималдығын бағалаңыз.
3. Тәуелсіз кездейсоқ шамалар тізбегі үлестірім қатарымен берілген:
1) Х -5n 0 5n
P
2)
Х -2 2
Р 0,5 0,5
Осы кездейсоқ шамалар тізбектеріне Чебышев теоремасын пайдалануға бола ма?
4. Әрбір 300 тәуелсіз кездейсоқ шамалардың дисперсиясы 5 –тен аспайды. Осы кездейсоқ шамалардың арифметикалық орташасы олардың математикалық үміттерінің арифметикалық ортащасынан ауытқуы 3-тен аспауының ықтималдығын бағалаңыз.
5. Қос-қостан тәуелсіз кездейсоқ шамалардың дисперсиясы 10-нан аспайды. Осы кездейсоқ шамалардың арифметикалық орташасының олардың математикалық үміттерінің арифметикалық орташасынан ауытқуының ықтималдығы 0,99-дан кем болмауы үшін қанша кездейсоқ шама алыну керек?
6. Қос-қостан тәуелсіз кездейсоқ шамалардың әрқайсысының дисперсиясы 10-нан аспайды. Осындай 16000 кездейсоқ шамалардың арифметикалық орташасы олардың арифметикалық үміттерінің арифметикалық орташасынан ауытқуының 0,25-тен артық болмауының ықтималдығын бағалаңыз.
7. Берілген шаманың шын мәні а. Осы шаманың мәнін анықтау үшін өлшеулер жүргізіледі. Осы өлшеулердің арифметикалық орташа мәнінің а-дан ауытқуы 2-ден кем болуының ықтималдығы 0,95-ке тең болуы үшін қанша өлшеу жасау керек?Әрбір өлшеудің орташа квадраттық ауытқуы 10-нан кіші.
8. Таңдама әдіспен бидай дәндерінің орташа салмағын анықтау керек.Дәндердің салмағының орташа квадраттық ауытқуы белгілі ол-0,04. Таңдама әдіспен алынған дәндердің орташа салмағының осы орташа салмақтың математикалық үмітінен (бұл берілген партиядағы дәндердің орташа салмағы) ауытқуы 0,01-ден артық болмауы 0,9 ықтималдықтан кем болмауы үшін қанша дән тексерілуі керек?
9. Тәуелсіз кездейсоқ шамалар тізбегі үлестірім заңдарымен берілген:
1. Х -5n 0 5n
P 1-
2. Х -n 0 n
P
Осы кездейсоқ шамалар тізбегіне Чебышев теоремасын пайдалануға бола ма?
10. Тәуелсіз кездейсоқ шамалардың әрқайсысының дисперсиясы 4-тен аспайды. Осы кездейсоқ шамалардың арифметикалық орташа мәнінің олардың математикалық үміттерінің арифметикалық орташа мәнінен ауытқуының ықтималдығы 0,99-дан артық болмауы үшін қанша кездейсоқ шама болуы керек?
Достарыңызбен бөлісу: |