ПоәК 042-18-38-57/03-2014 №1 басылым



жүктеу 7,58 Mb.
бет17/70
Дата19.01.2022
өлшемі7,58 Mb.
#33367
1   ...   13   14   15   16   17   18   19   20   ...   70
3d97b076-453c-11e4-973d-f6d299da70eeУМКД ЖБТФ

1.3. Резерфорд формуласы

Осы түсініктерге сүйеніп Э.Резерфорд заттан өткен кездегі α-бөлшектердің шашырау теориясын жасады. Ол шашыраған α-бөлшектердің θ бұрышының мәндері бойынша үлестірілуін бейнелейтін формула қорытып шығарды.

1.4-суретте α-бөлшектің атом ядросының шашырауы көрсетілген.

Э.Резерфорд есептеуіне қарағанда α-бөлшек пен атом ядросы арасындағы кулондық электростатикалық тебу күші әсерінен α-бөлшек АСВ траекториясы бойынша қозғалады: ал бұл фокусында ядро орналасқан гипербола болады. Сонда α-бөлшектің θ шашырау бұрышының шамасы оның бастапқы  жылдамдығына , М массасына,2e зарядының мөлшеріне және α-бөлшектің ядроға ең жақын келетін р қашықтығына, ядроның Ze зарядының м өлшеріне тәуелді болады. Бұл тәуелділікті мына түрде жазылады:



  (1.3)

Бұл формулаға қарағанда неғұрлым р шамасы аз болса соғұрлым θ шашырау бұрышы үлкен болады. Ал р=0болғанда, ол 180°-қа кетеді.

Бірақ (1.3)формуланы тәжірибе жүзінде тексеру мүмкін емес, өйкені формулада белгісіз шама бар, ол өлшеуге келмейтін нысаналық қашықтық р. Бұл қиындықты жеке бөлшекті емес, α-бөлшек шоғының шашырауын қарастырып шешеуге болады.

А нүктесіне зат қабыршығын (фольганы) орналастырайық. Бұған уақыт бірлігінде N бөлшек түсіп тұр дейік.θ1θ – dθ сфералық белдеуге шашырайтын dN бөлшек санын анықтайық (1.5-сурет). Осы сфералық белдеуге сәйкес денелік бұрыш мынаған тең:






  (1.4)
d  (1.5)

Осы (1.5)формула Резерфорд формуласы деп аталады. Бұл өрнектен мынаны көруге болады: егер атомның планетарлық моделі дұрыс болса және егер Кулон заңы  10-11 м аралыққы дейін орындалатын болса, онда шашыраған α-бөлшекьер саны dN шашырау бұрышы артқан сайын (1/sin4θ/2) және бөлшек энергиясы Е өскен сайын шашыратушы ядролар зарядының квадратына пропорционал өсуі керек. Резерфорд формуласының осы салдарының бәрі тәжірибе жүзінде тексертілген. Резерфорд формуласын тексеру үшін оны былай жазған қолайлы.


d  (1.6)
Алдымен фольгадан өткенде dN шашыраған α-бөлшектер санынның θ шашырау бұрышына тәуелділігі зерттеледі. Ол үшін тәжірибе жасалған кезде  n, Nшамаларын өзгертпеуге болады. Ендеше (1.6)өрнегіне сәйкес

d = const(1.7)

болады. Сонда θ шашырау бұрышының мәні өзгергенмен d шамасы өзгермеуге тиіс. Бұрыштық тәуелділікті тексеру мынаны көрсетті: θ 15°-тан 150°-қа дейін өзгергенде, яғни  25000 есе өзгергенде, d шамасы тұрақты болып отырған (1.1-кесте) (~10% дәлдікпен). Сойтіп Резерфорд формуласы дұрыс болып шықты.

1.1-кесте


θ°

Сцинтилляция саны

dN


d 

150

120


105

60

30



15

33

52

70



477

7800


13200

28,8

29,0


27,5

29,8


35,0

38,4


1.2-кесте


Элемент

Реттік нөмір

Тәжірибе мәндері

Cu

Ag

Pt



29

47

78



29,3

46,3


77,4




жүктеу 7,58 Mb.

Достарыңызбен бөлісу:
1   ...   13   14   15   16   17   18   19   20   ...   70




©g.engime.org 2024
әкімшілігінің қараңыз

    Басты бет
рсетілетін қызмет
халықаралық қаржы
Астана халықаралық
қызмет регламенті
бекіту туралы
туралы ережені
орталығы туралы
субсидиялау мемлекеттік
кеңес туралы
ніндегі кеңес
орталығын басқару
қаржы орталығын
қаржы орталығы
құрамын бекіту
неркәсіптік кешен
міндетті құпия
болуына ерікті
тексерілу мемлекеттік
медициналық тексерілу
құпия медициналық
ерікті анонимді
Бастауыш тәлім
қатысуға жолдамалар
қызметшілері арасындағы
академиялық демалыс
алушыларға академиялық
білім алушыларға
ұйымдарында білім
туралы хабарландыру
конкурс туралы
мемлекеттік қызметшілері
мемлекеттік әкімшілік
органдардың мемлекеттік
мемлекеттік органдардың
барлық мемлекеттік
арналған барлық
орналасуға арналған
лауазымына орналасуға
әкімшілік лауазымына
инфекцияның болуына
жәрдемдесудің белсенді
шараларына қатысуға
саласындағы дайындаушы
ленген қосылған
шегінде бюджетке
салығы шегінде
есептелген қосылған
ұйымдарға есептелген
дайындаушы ұйымдарға
кешен саласындағы
сомасын субсидиялау