"Определение качества водопроводной и речной воды"



жүктеу 420 Kb.
бет10/42
Дата26.01.2022
өлшемі420 Kb.
#35127
түріРеферат
1   ...   6   7   8   9   10   11   12   13   ...   42
ДИПЛОМ Каримова Маржан

Проблемный эксперимент

Как известно, исходным пунктом любого направленного исследования является проблема. Поиск путей решения проблемы приводит исследователя к выдвижению той или иной идеи – первоначального предположения. С момента рождения первоначального предположения и начинается процесс формирования гипотезы. Первоначальные предположения рождаются в форме догадки, т.е. интуитивно. Поиск идеи о возможном решении проблемы – процесс глубоко творческий, и единого решения здесь не существует. Тем не менее первоначальное предположение не возникает из ничего. Оно есть результат изучения исследователем новых фактических данных на основе знаний, накопленных в науке. Подкрепление идеи все новыми и новыми аргументами ведет к созданию обоснованного предположения – гипотезы.

Существует несколько путей подтверждения истинности гипотезы. Основным и наиболее распространенным способом является выведение вытекающих из нее следствий и их верификация, т.е. установление соответствия фактическим данным, согласуемости с ними. В данном случае рассуждение строится по такой схеме: если основное предположение гипотезы истинно, то в действительности должны иметь место такие-то и такие-то конкретные явления. Если данные явления будут обнаружены путем целенаправленного наблюдения, в научных экспериментах или же в практической деятельности, то гипотеза будет подтверждена. Именно таким способом подтвердилась в свое время гипотеза о существовании в растворах ионов [9].

Другой способ подтверждения гипотезы – непосредственное обнаружение объектов, мысль о существовании которых была основным содержанием гипотезы. Данный способ широко использовался Д.И.Менделеевым для предсказания свойств еще не открытых элементов.

И наконец, гипотеза может быть подтверждена путем дедуктивного выведения ее из другого, но уже достоверного знания – научной теории, закона. Для этого необходимо, чтобы с развитием науки был достоверно установлен такой закон, из которого данная гипотеза была бы выводима. Примером может служить открытие соединений инертных газов. До 1940-х гг. считалось, что инертные газы не способны образовывать химических соединений. Развитие теоретических представлений, оценка значений энергий связи электронов в атоме, ионизационных потенциалов и ионных радиусов позволили выдвинуть гипотезу, что электронные октеты в атомах инертных газов не являются столь уж стабильными. В 1933 г. американский ученый Л.Полинг достаточно убедительно показал принципиальную возможность образования химических соединений ксенона и криптона со фтором. Но прошло почти 30 лет, прежде чем на свет появились первые в мире соединения благородных газов Хе(РtF6) и Kr(РtF6).

Применение гипотез в учебном процессе не исчерпывается только реализацией принципа историзма. Большие возможности по использованию учебных гипотез заложены в организации учебного процесса. При этом сам ученик может быть поставлен в роль исследователя, генератора идей.

Большой потенциал заложен в использовании на уроке химического эксперимента. Выполнение стандартных, предусмотренных школьной программой опытов мало стимулирует творческую работу учащихся на уроках и не вполне соответствует специфике самой химической науки. Для нее характерен эксперимент, который носит исследовательский и проблемный характер. Такие эксперименты целесообразно включать в беседы эвристического характера или в процесс проблемного изложения материала.

В качестве иллюстрации можно провести проблемные опыты, разработанные Ю.В.Суриным. Хорошо известно, что учащиеся часто допускают ошибки в написании уравнений реакций металлов с азотной кислотой, считая допустимым выделение водорода. Эту ошибку можно предотвратить, проведя эксперимент, включенный в беседу проблемного характера. Приступая к изучению вопроса о взаимодействии металлов с азотной кислотой, учитель сначала предлагает учащимся высказать предположение о возможных продуктах такого взаимодействия.

Учащиеся часто считают, что металлы выделяют водород не только из растворов хлороводородной и серной кислот, но и из азотной кислоты. Для создания проблемной ситуации учитель предлагает провести исследовательский эксперимент и дать объяснение результатов опыта.

В пробирку с соляной кислотой помещают несколько гранул цинка. После того как начинается реакция с выделением водорода, добавляют 1–2 капли концентрированной азотной кислоты. Учащиеся наблюдают, что выделение водорода практически прекращается, но через некоторое время возобновляется. Такой результат опыта кажется учащимся непонятным и ставит их в тупик. Эксперимент заставляет задуматься над рядом вопросов:

1. В чем причина наблюдаемого явления?

2. Почему добавление азотной кислоты влияет на выделение водорода из раствора соляной кислоты?

3. Почему через определенное время выделение водорода возобновляется?

Учащиеся выдвигают предположения, объясняющие этот необычный факт. К решению проблемы они вполне подготовлены, т.к. имеют достаточный запас знаний о свойствах кислот, знакомы с составлением уравнений окислительно-восстановительных реакций. Выдвигается рабочая гипотеза: водород, выделяющийся из соляной кислоты, затрачивается на восстановление азотной кислоты. Данной гипотезе учащиеся могут дать обоснование, актуализировав свои знания о восстановительных свойствах водорода. Вспомнив, что водород в момент выделения является очень сильным восстановителем, а азотная кислота – окислитель, учащиеся записывают уравнение реакции восстановления азотной кислоты:


HNO3 + 8H = NH3 + 3H2O.
Рассуждая дальше, ученики приходят к заключению, что образующийся аммиак связывается соляной кислотой в хлорид аммония, остающийся в растворе, поэтому выделения водорода не происходит:
NH3 + HCl = NH4Cl.
То, что это действительно так, учащиеся могут доказать, проведя исследование раствора на содержание иона аммония. Полученный в ходе исследовательского эксперимента вывод ученики могут использовать для правильной записи уравнения реакции цинка с сильно разбавленной азотной кислотой:
4Zn + 10HNO3 = 4Zn(NO3)2 + NH4NO3 + 3H2O.
Теперь учащиеся смогут ответить на все вопросы, поставленные при выделении рабочей гипотезы. Водород не выделяется из азотной кислоты и растворов других кислот в присутствии азотной кислоты потому, что расходуется на восстановление азотной кислоты. Возобновляется же выделение водорода в данном опыте потому, что происходит восстановление всей азотной кислоты.

Ученик выступает в роли исследователя и при решении экспериментальных задач. Так, при исследовании свойств веществ схема исследования может быть следующей:



  1. актуализация знаний;

  2. постановка целей исследования;

  3. проведение теоретического анализа;

  4. построение гипотезы;

  5. составление плана экспериментальной проверки гипотезы;

  6. выполнение эксперимента;

  7. обсуждение результатов и формулировка выводов.

Эксперимент – важнейший путь осуществления связи теории с практикой при обучении химии, путь превращения знаний в убеждения. Химический эксперимент, применяемый в школьной практике, обычно не противоречит существующим закономерностям и служит подтверждением определенных теоретических положений. Однако результаты некоторых химических опытов являются неожиданными и не вписываются в традиционные представления о свойствах веществ или закономерностях протекания химических реакций. Например, возможна ли химическая реакция между бромоводородной кислотой и металлом, стоящим в электрохимическом ряду напряжений металлов после водорода? Или: может ли слабая кислота вытеснить более сильную кислоту из ее соли? Ответ кажется однозначным – нет. Тем не менее такие примеры существуют и имеют научное подтверждение. Подобные опыты – благодатная почва для введения в учебный процесс проблемного обучения, формирования диалектического и системного мышления школьника.

Приведем описание нескольких примеров таких парадоксальных опытов.

Растворение меди в бромоводородной кислоте

Реактивы. Свежеосажденная медь, крепкий раствор бромоводородной кислоты.

Проведение опыта. В пробирку с небольшим количеством свежеосажденной меди приливают

3–5 мл бромоводородной кислоты и осторожно нагревают на пламени спиртовки. Начинается энергичное взаимодействие меди с кислотой. Выделяющийся водород собирают в небольшую пробирку или непосредственно поджигают у отверстия пробирки. Водород горит зеленоватым пламенем.

Получение свежеосажденной меди. В фарфоровую чашку наливают насыщенный раствор сульфата меди(II) и вносят гранулы цинка. Выделяющаяся медь осаждается на цинке в виде рыхлой массы. При перемешивании раствора осадок оседает на дне чашки. Осадок промывают, вынимают гранулы непрореагировавшего цинка; полученную медь, не высушивая, используют для опыта.

Объяснение опыта. Взаимодействие меди с бромоводородной кислотой можно объяснить тем, что в результате реакции образуется комплексное соединение Н[CuBr2]:


4HBr + 2Cu = 2H[CuBr2] + H2.
Комплексный ион [CuBr2]– достаточно прочный, вследствие чего концентрация ионов меди Cu+ в растворе оказывается ничтожно малой, электродный потенциал меди становится отрицательным и происходит выделение водорода.

Аналогичный опыт можно провести с серебром и йодистоводородной кислотой. С порошком серебра реакция идет очень бурно. Образующийся йодид серебра практически нерастворим в воде (произведение растворимости ПР(AgI) = 8,3•10–17). Поэтому в данном случае концентрация ионов серебра в растворе ничтожна, и потенциал серебра становится отрицательным.

Слабая кислота вытесняет сильную из ее соли

Реактивы. Борная кислота, хлорид натрия, универсальная индикаторная или синяя лакмусовая бумага.

Проведение опыта. В пробирку помещают тонко измельченную смесь, состоящую из 1 г хлорида натрия и 3 г борной кислоты. Закрепляют пробирку в лапке пробиркодержателя и нагревают на пламени спиртовки. Через некоторое время у отверстия пробирки появляется белый дым. Подносят к отверстию пробирки универсальную индикаторную бумагу, смоченную водой, наблюдается покраснение бумаги. При проведении опыта учителю необходимо отметить нелетучесть борной кислоты.

Объяснение опыта. При нагревании смеси протекает следующая реакция:


2NaCl + 4H3BO3 = Na2B4O7 + 5H2O + 2HCl.
В растворе реакция протекала бы в обратную сторону – соляная кислота вытеснила бы борную из ее соли. При нагревании же происходит смещение равновесия в сторону образования летучих продуктов – хлороводорода и водяных паров. При этом также образуется устойчивый к нагреванию тетраборат натрия. Возможность протекания данного химического процесса можно подтвердить и термодинамическими расчетами.

Вычислим изменение энтальпии химической реакции, используя стандартные энтальпии образования участвующих в реакции веществ.

Аналогично вычислим изменение энтропии химической реакции, используя стандартные энтропии образования веществ

На основе полученных данных рассчитаем изменение энергии Гиббса:


G = H – TS,
G0 = 486,6 – 298•1 = 188,6 кДж.
Положительное значение энергии Гиббса говорит о невозможности протекания химической реакции в стандартных условиях. Рассчитаем, при какой температуре возможно протекание данной реакции:
Т = Н/S = 486,6/1 = 486,6 К, или 213,6 °С.
Данная химическая реакция протекает при сравнительно небольшом нагревании.

Растворение меди в растворе хлорида железа(III)

Реактивы. Свежеосажденная медь, 10%-й раствор хлорида железа(III).

Проведение опыта. В пробирку помещают немного свежеосажденной меди и приливают раствор хлорида железа(III). В течение минуты происходит растворение меди, и раствор окрашивается в зеленый цвет. Для увеличения скорости реакции раствор можно немного подогреть. При использовании медных опилок, стружек или медной проволоки реакция идет слишком медленно.

Объяснение опыта. Данная химическая реакция используется в радиотехнике для травления плат. При этом протекает процесс, описываемый следующим химическим процессом:
Cu + FeCl3 = CuCl2 + FeCl2.
Реакция является окислительно-восстановительной. Ион железа Fe3+ – окислитель, атом меди – восстановитель. Мерой окислительно-восстановительной способности веществ служат их окислительно-восстановительные потенциалы. Чем больше алгебраическая величина стандартного окислительно-восстановительного потенциала данного атома или иона, тем больше его окислительные свойства, а чем меньше алгебраическое значение окислительно-восстановительного потенциала атома или иона, тем больше его восстановительные свойства.

Для определения направления окислительно-восстановительной реакции необходимо найти ЭДС элемента, образованного из данного окислителя и восстановителя. ЭДС (Е) окислительно-восстановительного элемента равна:


Е = Е(ок-ля ) – Е(вос-ля).
Если Е > 0, то данная реакция возможна. Окислительно-восстановительные потенциалы пар Е0(Fe3+/Fe2+) = 0,771 В, Е0(Cu2+/Cu0) = 0,338 В. Найдем электродвижущую силу реакции:
ЭДС = 0,771 – 0,338 = 0,433 В.
Положительное значение ЭДС подтверждает возможность протекания данной реакции в стандартных условиях.

Растворение меди в растворе аммиака

Реактивы. 15–25%-й раствор аммиака, свежеосажденная медь.

Проведение опыта. В колбу объемом 250–300 мл помещают несколько крупинок свежеосажденной меди и приливают 15–20 мл крепкого раствора аммиака. Колбу закрывают пробкой и сильно встряхивают в течение нескольких секунд. Раствор приобретает голубую окраску.

Объяснение опыта. Растворение меди в растворе аммиака можно объяснить тем, что при окислении меди кислородом воздуха в присутствии аммиака образуется устойчивый комплексный ион, который и определяет направление химической реакции:
2Cu + 8NH3 + O2 + 2H2O = 2[Cu(NH3)4 ]2+ + 4OH–.
Поскольку реакция является окислительно-восстановительной, можно рассчитать ее ЭДС:
Cu + 4NH3 – 2e = [Cu(NH3)4]2+, Е0 = –0,07 В,
O2 + 2H2O + 4е = 4OH–, Е0 = 0,401 В,
ЭДС = 0,401 – (–0,07) = 0,408 В.

Положительное значение ЭДС, как и в предыдущем опыте, свидетельствует о возможности ее протекания.

Учебный химический эксперимент относится к числу методов обучения, специфика которого заключается в отражении неотъемлемой компоненты науки. Важнейшая особенность химического эксперимента как средства познания состоит в том, что в процессе наблюдения и при самостоятельном выполнении опытов учащиеся не только общаются с конкретными объектами химической науки, но могут видеть и осуществлять процессы качественного изменения веществ. Тем самым учащиеся познают многообразную природу веществ, накапливают факты для сравнений, обобщений, выводов, убеждаются в возможности управления сложными химическими процессами.


жүктеу 420 Kb.

Достарыңызбен бөлісу:
1   ...   6   7   8   9   10   11   12   13   ...   42




©g.engime.org 2024
әкімшілігінің қараңыз

    Басты бет
рсетілетін қызмет
халықаралық қаржы
Астана халықаралық
қызмет регламенті
бекіту туралы
туралы ережені
орталығы туралы
субсидиялау мемлекеттік
кеңес туралы
ніндегі кеңес
орталығын басқару
қаржы орталығын
қаржы орталығы
құрамын бекіту
неркәсіптік кешен
міндетті құпия
болуына ерікті
тексерілу мемлекеттік
медициналық тексерілу
құпия медициналық
ерікті анонимді
Бастауыш тәлім
қатысуға жолдамалар
қызметшілері арасындағы
академиялық демалыс
алушыларға академиялық
білім алушыларға
ұйымдарында білім
туралы хабарландыру
конкурс туралы
мемлекеттік қызметшілері
мемлекеттік әкімшілік
органдардың мемлекеттік
мемлекеттік органдардың
барлық мемлекеттік
арналған барлық
орналасуға арналған
лауазымына орналасуға
әкімшілік лауазымына
инфекцияның болуына
жәрдемдесудің белсенді
шараларына қатысуға
саласындағы дайындаушы
ленген қосылған
шегінде бюджетке
салығы шегінде
есептелген қосылған
ұйымдарға есептелген
дайындаушы ұйымдарға
кешен саласындағы
сомасын субсидиялау