Машинное обучение



жүктеу 195,2 Kb.
Дата26.01.2022
өлшемі195,2 Kb.
#34900
искусственные нейронные сети

Машинное обучение

Искусственные нейронные сети

Искусственные нейронные сети

  • математические модели, а также их программные или аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы.

ИНС представляют собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов). Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие локально простые процессоры вместе способны выполнять довольно сложные задачи.

  • ИНС представляют собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов). Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие локально простые процессоры вместе способны выполнять довольно сложные задачи.

С математической точки зрения, обучение нейронных сетей — это многопараметрическая задача нелинейной оптимизации. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что в случае успешного обучения сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке, а также неполных и/или «зашумленных», частично искаженных данных.

  • С математической точки зрения, обучение нейронных сетей — это многопараметрическая задача нелинейной оптимизации. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что в случае успешного обучения сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке, а также неполных и/или «зашумленных», частично искаженных данных.

Классификация

  • Сети прямого распространения (Feedforward)
    • Многослойный перцептрон
    • Сети Ворда
  • Рекуррентные нейронные сети‎
    • Сеть Хопфилда
    • Сеть Хемминга
    • Сеть Коско
  • Радиально-базисные функции (RBF)
  • Самоорганизующаяся карта Кохонена (SOM)
  • Сети свертки (LeNet-5, неокогнитрон)
  • Адаптивно-резонансная теория

Структура нейросети

Формальный нейрон

  • Математически, искусственный нейрон обычно представляют как некоторую нелинейную функцию от единственного аргумента — линейной комбинации всех входных сигналов. Данную функцию называют функцией активации или функцией срабатывания, передаточной функцией. Полученный результат посылается на единственный выход.

Классификация

  • Входные нейроны — принимают исходный вектор, кодирующий входной сигнал. Как правило, эти нейроны не выполняют вычислительных операций, а просто передают полученный входной сигнал на выход, возможно, усилив или ослабив его;
  • Выходные нейроны — представляют из себя выходы сети. В выходных нейронах могут производиться какие-либо вычислительные операции;
  • Промежуточные нейроны — выполняют основные вычислительные операции

Структура нейрона

Основные типы передаточных функций

  • Линейная
  • шаговая (линейная функция с насыщением)
  • Недостатками шаговой и полулинейной активационных функций относительно линейной можно назвать то, что они не являются дифференцируемыми на всей числовой оси, а значит не могут быть использованы при обучении по некоторым алгоритмам.
  • Пороговая (функция Хевисайда)
    • До тех пор пока взвешенный сигнал на входе нейрона не достигает некоторого уровня T — сигнал на выходе равен нулю. Как только сигнал на входе нейрона превышает указанный уровень — выходной сигнал скачкообразно изменяется на единицу.
  • Сигмоидальная

Сигмоидальная

  • Логистическая
    • Здесь t — это параметр функции, определяющий её крутизну. Когда t стремится к бесконечности, функция вырождается в пороговую. При t = 0 сигмоида вырождается в постоянную функцию со значением 0,5. Область значений данной функции находится в интервале (0,1).
    • Важным достоинством этой функции является простота её производной, что облегчает использование этой функции при обучении сети по алгоритму обратного распространения.
  • Гиперболический тангенс
    • область значений лежит в интервале (-1;1)
  • Другие функции
    • Радиально-базисная
    • Экспонента
    • Тригонометрический синус

жүктеу 195,2 Kb.

Достарыңызбен бөлісу:




©g.engime.org 2024
әкімшілігінің қараңыз

    Басты бет
рсетілетін қызмет
халықаралық қаржы
Астана халықаралық
қызмет регламенті
бекіту туралы
туралы ережені
орталығы туралы
субсидиялау мемлекеттік
кеңес туралы
ніндегі кеңес
орталығын басқару
қаржы орталығын
қаржы орталығы
құрамын бекіту
неркәсіптік кешен
міндетті құпия
болуына ерікті
тексерілу мемлекеттік
медициналық тексерілу
құпия медициналық
ерікті анонимді
Бастауыш тәлім
қатысуға жолдамалар
қызметшілері арасындағы
академиялық демалыс
алушыларға академиялық
білім алушыларға
ұйымдарында білім
туралы хабарландыру
конкурс туралы
мемлекеттік қызметшілері
мемлекеттік әкімшілік
органдардың мемлекеттік
мемлекеттік органдардың
барлық мемлекеттік
арналған барлық
орналасуға арналған
лауазымына орналасуға
әкімшілік лауазымына
инфекцияның болуына
жәрдемдесудің белсенді
шараларына қатысуға
саласындағы дайындаушы
ленген қосылған
шегінде бюджетке
салығы шегінде
есептелген қосылған
ұйымдарға есептелген
дайындаушы ұйымдарға
кешен саласындағы
сомасын субсидиялау