Дәріс тақырыбы: Графтар теориясы (5 сағат) Негізгі сұрақтар



жүктеу 0,75 Mb.
бет7/23
Дата03.02.2022
өлшемі0,75 Mb.
#35463
1   2   3   4   5   6   7   8   9   10   ...   23
лекция

Анықтама: G1, G2 графтарының бірігуі деп G1UG2=1UM2,R1UR2> графын айтады.

Анықтама:ЕгерМ2∩М2= онда G1,G2 графының қиылысуы деп, G1∩G2=1∩M2,R1∩R2> графын айтады.

Анықтама: G1, G2 графтарының сақиналы қосындысы деп G1 G2=1UM2,R1 R2>, мұндағы R1 R2=( R1\R2)U(R2 \R1).

Мысалы G1 және G2 графтары берілсін.

G1=< {a1, a2, a3}, {[a1, a2], (a2, a3)}>;

G2=< {a1, a2, a4}, {(a1, a2, ), (a4, a1)}>;



Табу керек: G1U G2, G1∩G2, G1 G2?



Шешуі: Анықтама бойынша:

G1UG2=<{a1, a2, a3, a4},{[a1, a2], (a2, a3), (a4, a1)}>;

G1∩G2=< {a1, a2}, {(a1, a2)}>.

G1 G2=<{ a1, a2, a3, a4}, {( a2, a1), (a2, a3), (a4, a1)}>;

G1, G2 графтарының қосылуы деп

G1+ G2 =



Мына суреттің а пунктіндегі G1, G2 графтарының қосындысы б пунктте көрсетілген.



G1, G2графтарының көбейтіндісі деп G1xG2=1xM2, R>, мұндағы ((a1,b1), (a2, b2)) R тек сонда ғана, егер a1=a2 және (b1,b2) R2 немесе b1=b2 және (a1,a2) R1.



Ішкі графтар және графтардың бөлігі.

Граф бөліктерімен операциялар.

Анықтама: Егер М1 М және R1 R∩(M1)2болса, яғни G1 графының төбелер жиыны G графы төбелер жиынына, ал G1 қабырғалар жиыны G графының қабырғалар жиынына жатса G1- G бөлігі деп аталады.

АнықтамаАйталық. G=,G1=1,R1> графтары берілсін. Егер М1 М және R1=R∩(M1)2болса, яғни G1 графының төбелер жиыны G-ң төбелер жиынында жатса ал G1-ң доғалары екі жағымен де G графына жатса G1–G графының ішкі графы деп аталады.

Анықтама.Егер Н графыныңтөбелер жиыны V(H) мен қабырғалар жиыны E(H) G графының сәйкесінше төбелері мен қабырғалар V(G), E(G) жиындарында жатса және , онда Н графы G графының бөлігі деп аталады .

Анықтама Егер , G графының бөлігі Н суграф деп аталады. Егер G графының кез келген төбесі Н графының ең болмаса бір қабырғасына инцидентті болса , онда бағытталмаған Н графы G графын жабады дейміз.

Мысалы:а) G=<{1, 2, 3, 4}, {[1, 2], [1, 3], [1,4], [2,3], [3,4]}>

б)G1=<{1, 2, 3}, {[1, 2], [1, 3], [2, 3]}>-G ішкі графы (М1 МR1, R1=R∩R1)

в)G11=<{1,2,3},{[1,2],(2,3)}>-G графының бөлігі (M11 М,R11 R∩(M11)2)



Граф бөліктеріне қолданылатын амалдар.

Граф бөліктеріне төмендегідей амалдар орындалады:

Н-бөліктің толықтаушы -G-графының Н-ға жатпайтын барлық қабырғалар жиынымен анықталады. , мұндағы E(G)-G-графының қабырғаларының жиыны.

-G графының Н1, Н2бөліктерінің қосындысы :

- және ;

- G графының Н1, Н2 бөліктерінің көбейтіндісі : және ;

Егер H1, H2 бөліктерінің ортақ төбелері болмаса, яғни , демек ортақ қабырғалары да жоқ , онда H1, H2 бөліктері төбелері бойынша қиылыспайды.

Егер H1, H2 бөліктерінің ортақ қабырғалары болмаса ,онда H1 , H2 бөліктері қабырғалары бойынша қиылыспайды.

Егер болса онда тура қосынды деп аталады.

Графтар мен бинарлы қатынастар.

V жиынында берілген R қатынасына өзара бір мәнді анықталған, орындалса ғана қабырғасы бар болатын V төбелер жиындарымен қабырғалар еселі емес бағытталған G(R) графы сәйкес келеді.



1-мысал: Симметриялы, антисиметриялы, рефлексивті, антирефлексивті, транзитивті R бинарлы қатынасына өзара бір мәнді сәйкес G графының қандай ерекшеліктері бар?

Айталық , R бинарлы қатынасы жиынында анықталсын.

а) симметриялы R қатынасына еселі қабырғалары жоқ, орындалса ғана қабырғасы бар болатын бағытталмаған G(R) графы сәйкес келеді (симметриялы болғандықтан ).

б) Антисиметриялы R қатынасына еселі қабырғаларсыз,(әртүрлі төбелерге қарама-қарсы бағытталған қабырғалары бар төбелер болмайтын) өзара бір мәнді бағытталған G(R) графы сәйкес келеді .

в) Егер R рефлексивті болса, барлық төбелерінде ілгектері бар еселі қабырғаларсыз G(R) графы сәйкес келеді.

г) Егер R антирефлексивті болса, еселі қабырғаларсыз G(R) графында бір де бір ілгек болмайды.

д) Егер R транзитивті болса, еселі қабырғаларсыз G(R) графының әрбір және қабырғалар жұбына оларды тұйықтайтын қабырғасы бар болады.


жүктеу 0,75 Mb.

Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   10   ...   23




©g.engime.org 2024
әкімшілігінің қараңыз

    Басты бет
рсетілетін қызмет
халықаралық қаржы
Астана халықаралық
қызмет регламенті
бекіту туралы
туралы ережені
орталығы туралы
субсидиялау мемлекеттік
кеңес туралы
ніндегі кеңес
орталығын басқару
қаржы орталығын
қаржы орталығы
құрамын бекіту
неркәсіптік кешен
міндетті құпия
болуына ерікті
тексерілу мемлекеттік
медициналық тексерілу
құпия медициналық
ерікті анонимді
Бастауыш тәлім
қатысуға жолдамалар
қызметшілері арасындағы
академиялық демалыс
алушыларға академиялық
білім алушыларға
ұйымдарында білім
туралы хабарландыру
конкурс туралы
мемлекеттік қызметшілері
мемлекеттік әкімшілік
органдардың мемлекеттік
мемлекеттік органдардың
барлық мемлекеттік
арналған барлық
орналасуға арналған
лауазымына орналасуға
әкімшілік лауазымына
инфекцияның болуына
жәрдемдесудің белсенді
шараларына қатысуға
саласындағы дайындаушы
ленген қосылған
шегінде бюджетке
салығы шегінде
есептелген қосылған
ұйымдарға есептелген
дайындаушы ұйымдарға
кешен саласындағы
сомасын субсидиялау