Аксиомы стереометрии и их следствия



жүктеу 261,1 Kb.
бет2/3
Дата20.11.2022
өлшемі261,1 Kb.
#40246
түріУрок
1   2   3
!!! СТЕРЕОМЕТРИЯ ЗАДАЧИ

Теорема 2
Через две пересекающиеся прямые проходит плоскость, и притом только одна.
Иллюстрация теоремы 2. (Рис. 5.)

Рис. 5.

Решение задачи 1
Задача 1.
Даны две прямые, которые пересекаются в точке М. Докажите, что все прямые, не проходящие через точку М и пересекающие данные прямые, лежат в одной плоскости (Рис. 6.).

Рис. 6.
Решение:
Нам даны две прямые а и b, которые пересекаются в некоторой точке М. Возьмем произвольную прямую с, которая не проходит через точку М, но пересекает исходные прямые а и b в точках А, В, соответственно.
Через две пересекающиеся прямые проходит плоскость, и притом только одна, согласно 2 теореме. Значит через пересекающиеся прямые а и проходит единственная плоскость, обозначим ее  .
Две разные точки А и В прямой с принадлежат плоскости  . А из того, что две точки прямой принадлежат плоскости, вытекает, что все точки прямой принадлежат плоскости, т.е. вся прямая лежит в плоскости. Значит, прямая с принадлежит этой плоскости.
Таким образом, мы доказали, что все прямые, пересекающие А и В, но не проходящие через М, лежат в одной плоскости. 
Решение задачи 2
Три данные точки соединены попарно отрезками. Докажите, что все отрезки лежат в одной плоскости.
Решение:
Пусть нам даны три точки: А, В, и С. Нужно доказать, что отрезки АВ, ВС, СА лежат в одной плоскости (Рис. 7.).

Рис. 7.
Если точка С лежит на прямой АВ, то ответ очевиден. Предположим, что точка С не принадлежит прямой АВ. Тогда через три точки A, B, C, не лежащие на одной прямой, проходит плоскость, и притом только одна, в силу аксиомы 1. Обозначим эту плоскость 
Прямая АВ целиком лежит в плоскости  , потому что две ее точки лежат в этой плоскости. Но, значит, и отрезок АВ лежит в плоскости  .
Аналогично и с другими отрезками. Прямая ВС лежит в плоскости  , потому что две ее точки В и С лежат в плоскости , значит, и отрезок ВС лежит в плоскости  .
И аналогично, отрезок АС лежит в плоскости  . Что и требовалось доказать. 
Решение задачи 3
Две смежные вершины и точка пересечения диагоналей параллелограмма лежат в плоскости  . Лежат ли 2 другие вершины параллелограмма в плоскости  ?
Решение:

Рис. 8.
Пусть дан параллелограмм АВСD. Известно: точка А, точка В, точка О – точка пересечения диагоналей, лежат в плоскости  . Нужно проверить, лежат ли вершины С и D лежат также в этой плоскости.


Через три точки А, В и О проходит плоскость, и притом только одна. Это плоскость  . Прямая АО целиком лежит в этой плоскости, потому что две ее точки лежат в плоскости. Значит, точка С, точка прямой АО, лежит в плоскости  .
Аналогично, прямая ВО целиком лежит в плоскости  , значит, точка D этой прямой тоже лежит в плоскости  .
Ответ: Да, вершины С и D лежат в плоскости  .

Решение задачи 4


Дана прямая и точка, не лежащая на этой прямой. Докажите, что все прямые, проходящие через данную точку и пересекающие данную прямую, лежат в одной плоскости.

Рис. 9.
Решение:
Нам дана прямая а и некоторая точка М, которая не лежит на этой прямой. Нам нужно доказать, что все прямые, которые проходят через точку М и пересекают прямую а лежат в некоторой единственной плоскости.
Мы знаем, что в силу 1 теоремы через прямую а и точку М проходит единственная плоскость, обозначим через  . Теперь возьмем произвольную прямую, которая проходит через точку М и пересекает прямую а, например, в точке А. Прямая МА лежит в плоскости  , потому что две ее точки М и А, лежат в этой плоскости. Значит, и вся прямая лежит в плоскости  , в силу 2 аксиомы.
Итак, мы взяли произвольную прямую, которая удовлетворяет условиям задачи, и доказали, что она лежит в плоскости  . Значит, все прямые, проходящие через точку М и пересекающие прямую а лежат в плоскости  , что и требовалось доказать.

Решение задачи 5


Верно ли утверждение:
а) если две точки окружности лежат в плоскости, то и вся окружность лежит в этой плоскости;
б) если три точки окружности лежат в плоскости, то и вся окружность лежит в этой плоскости?

Рис. 10.

жүктеу 261,1 Kb.

Достарыңызбен бөлісу:
1   2   3




©g.engime.org 2024
әкімшілігінің қараңыз

    Басты бет
рсетілетін қызмет
халықаралық қаржы
Астана халықаралық
қызмет регламенті
бекіту туралы
туралы ережені
орталығы туралы
субсидиялау мемлекеттік
кеңес туралы
ніндегі кеңес
орталығын басқару
қаржы орталығын
қаржы орталығы
құрамын бекіту
неркәсіптік кешен
міндетті құпия
болуына ерікті
тексерілу мемлекеттік
медициналық тексерілу
құпия медициналық
ерікті анонимді
Бастауыш тәлім
қатысуға жолдамалар
қызметшілері арасындағы
академиялық демалыс
алушыларға академиялық
білім алушыларға
ұйымдарында білім
туралы хабарландыру
конкурс туралы
мемлекеттік қызметшілері
мемлекеттік әкімшілік
органдардың мемлекеттік
мемлекеттік органдардың
барлық мемлекеттік
арналған барлық
орналасуға арналған
лауазымына орналасуға
әкімшілік лауазымына
инфекцияның болуына
жәрдемдесудің белсенді
шараларына қатысуға
саласындағы дайындаушы
ленген қосылған
шегінде бюджетке
салығы шегінде
есептелген қосылған
ұйымдарға есептелген
дайындаушы ұйымдарға
кешен саласындағы
сомасын субсидиялау