Изотермиялық процесс
|
ΔS ≥Q/T
|
ΔS = Q/T
|
ΔS > Q/T
|
Адиабаттық процесс
|
ΔS ≥0
|
ΔS =0
|
ΔS >0
|
Термодинамиканың бірінші және екінші заңдарының
біріккен түрі:
|
dU ≤ TdS - õA
|
dU = TdS – õA
|
dU < TdS -õA
|
õA1 = 0 және õА = RdV болғанда:
|
dU ≤ TdS - PdV
|
dU = TdS - PdV
|
dU < TdS - PdV
|
Кестедегі адиабаттық процесс үшін жазылған өрнектердің мәні зор. Олардан термиялық оқшауланған жүйе үшін dS≥0 жазамыз, яғни мұндай жүйелердің энтропиясы не тұрақты болып қалады (қайтымды процесс үшін), не өседі (қайтымсыз процесс үшін).
Өздігінен жүретін процестерде энтропияның өсетініне назар аударайық. Мәселен, А және Б денесі берілсін. Олардың температуралары әр түрлі ТА, ТБ болсын. Егер ТА>ТБ болса және оларды өзара жанастырсақ, онда жылу температурасы жоғары денеден (А) температурасы төмен денеге өтеді. Ол жылуды «Q» деп белгілейік. Екі денедегі энтропия өзгерістері былай жазылады:
S2А-S1A=Q/TA
Ал Б денесі үшін:
S2Б - S1Б = Q/TБ
Мұндағы 1 және 2-денелердің бастапқы және соңғы жағдайларын көрсетеді. Ал жүйедегі энтропияның жалпы өзгерісін былай жазамыз:
(S2А+ S2Б) – (S1A+ S1Б)= Q( TA- TБ)/ TA∙TБ (41)
∆S > 0 болғандықтан теңдеудің оң жағындағы өрнек нөлден үлкен болады, яғни:
(S2А+ S2Б) – (S1A+ S1Б)= Q( TA –TБ)/ TA∙TБ> 0 (42)
Теңдеудегі (S2А+ S2Б)- жүйенің соңғы жағдайын, ал (S1A+ S1Б) жүйенің бастапқы жағдайын көрсетеді. Теңдеудің оң жағы нөлден үлкен болса, сол жағы да нөлден үлкен, яғни S2А+ S2Б> S1A+ S1Б, олай болса бұл мысалдан жылу өту процесінде ∆S > 0. Өздігінен жүретін процестерде энтропияның артатынын көреміз.
Бұдан кез келген өздігінен жүретін процесс (сондай-ақ қайтымсыз процесс) оқшауланған жүйеде жүргенде энтропия өседі деуге болады, ал тепе-теңдік энтропияның ең үлкен (max) шамасымен сипатталады. Олай болса энтропияны оқшауланған жүйеде процестің өздігінен жүретін мүмкіндігінің көрсеткіші (критериясы) ретінде алуға болады
Жүйедегі ретсіздіктің сандық мәнің энтропия анықтайды, оны S әрпімен белгілейміз. Ол арқылы жүйенің макроскопиялық күйін мына теңдікпен анықтауға болады:
S = klgW (43)
мұндағы: k – пропорционалдық коэффициент, W- жүйе күінің ықтималдығы.
Энтропия жүйе қүінің ықтималдығының логарифмдік өрнектелуі
S = R lgW= 2,303 R lgW (44)
Мұндағы, R – газ тұрақтысы, W- жүйе күінің ықтималдығы.
Өте дұрыс құрастырылған кристалдар ең аз энтропияға ие. Құрылымында қателіктері бар кристалдың энтропиясы абсолютті нөлде бірнеше шамаға көп, себебі өте дырыс құрылымды бірнеше жолмен бұзуға болады. Температураның жоғарлауымен энтропия өседі, себебі бөлшектердің қозғалысының жылдамдығы артады, сондықтан олардың орналасу күйінің саны өседі. Заттың кристал күйден сұйық күйге және сұйық күйден газ күйіне өткенде энтропия жоғарлайды. Химиялық реакция кезінде энтропия өзгереді. Молекулалар санының өзгерісіне әкелетін реакциялар кезінде энтропия өзгерісі өте жоғары: газ молекулаларының санының артуы энтропияның азаюына әкеледі.
Ішкі энергия және энтальпия сияқты энтропия да жүйенің күйіне тәуелді. Бірақ осы екі функциядан айырмашылығы жылу мен энтропия өзгерісінің байланысы процестің жүру тәсіліне, яғни оның жылдамдығына тәуелді.
Айтылғандай кез келген процесте жылу мен істелінген жұмыс арасындағы айырмашылық әр түрлі болуы мүмкін. Осы шамалардың айырмашылығы жүйенің ішкі энергиясының өзгерісіне тең процестің жүру жолына тәуелді емес. Процесс тез жүрсе жұмыс аз болады, ал баяу жүрсе жұмыс артады. Процесті өте баяу жүргізіп, яғни өте баяу қадамдармен тепе-теңдіктің бір күйінен келесі күйге өткізгенде жұмыс максималды мәніне ие болады. Термодинамикалық процестер қайтымды немесе қайтымсыз деп аталады.
Егер процесс қайтымды болса және тұрақты температурада (изотермиялық) жүрсе, онда энтропияның өзгерісі жылу сіңіру теңдігімен байланысты:
dS = õQ/T (44)
мүндағы: Q– қайтымды изотермиялық процесте жүйенің сіңірген жылу мөлшері; Т – абсолютті температура.
Температурасы төмендеген сайын белгілі бір мөлшерде жылуды сіңірген жүйенің энтропиясы өседі. Оны біз соңғы теңдіктен көре аламыз.
Достарыңызбен бөлісу: |