Применение элементов комбинаторики, бинома Ньютона в теории вероятности



Дата04.06.2020
өлшемі57 Kb.
#30853
түріУрок
Турарбекова А. А


Дисциплина: Математика.

Модуль: Теория вероятности и элементы математической статистики.

Тема урока: Применение элементов комбинаторики, бинома Ньютона в теории вероятности.

Цель урока: Изучить применение основных элементов комбинаторики в теории вероятности. Закрепить знания, умения и навыки решения задач по данной теме.

Тип урока: формирование новых знаний.
План урока

  1. Изучить теорию.

  2. Рассмотреть примеры.

  3. Решить задачи.


I. Комбинаторные методы решения задач.



Используем классическое определение вероятности: ,

где - некоторое событие, n – число всех возможных исходов события, а m – число всех благоприятных исходов.


Пример 1. Таня забыла последнюю цифру номера телефона знакомой девочки и набрала ее наугад. Какова вероятность того, что Таня попала к своей знакомой?

Решение: На последнем месте может стоять одна из 10 цифр: от 0 до 9. Значит,
Пример 2. На четырех карточках написаны буквы О, Т, К, Р. Карточки перевернули и перемешали. Затем открыли наугад последовательно эти карточки и положили в ряд. Какова вероятность того, что получится слово «КРОТ»?

Решение. Исходы – все возможные перестановки из четырех элементов (О, Т, К, Р); общее число исходов:

Событие А = {после открытия карточек получится слово «КРОТ»}:



(только один вариант расположения букв – «КРОТ»)


Пример 3. Cлучайным образом одновременно выбираются две буквы из 33 букв русского алфавита. Найдите вероятность того, что:

1) обе они согласные;

2) среди них есть «ъ»;

3) среди них нет «ъ»;



4) одна буква гласная, а другая согласная.
Решение. Исходы – все возможные пары букв русского алфавита без учета порядка их расположения; общее число возможных исходов

Рассмотрим события:



1) А={ обе выбранные буквы – согласные}. Поскольку в русском языке 21 согласная буква, 10 гласных и 2 буквы («ь», «ъ») не обозначающие звуков), то событию А благоприятствует исходов.



2) В={среди выбранных букв есть «ъ»}. Выбор твердого знака , выбор второй буквы из оставшихся .

3) С={среди выбранных букв нет «ъ»}.



4) D={среди выбранных букв одна буква гласная, а другая согласная}.





ІІ. Закрепление знаний и умений. Задачи для самостоятельного выполнения на тему «Комбинаторные методы решения задач».

1. Найдите вероятность того, что три последние цифры случайно выбранного телефонного номера — это цифры 2, 3, 1 в произвольном порядке.

2. На книжной полке 6 учебников и 3 сборника стихов. Найдите вероятность того, что среди случайно выбранных 5 книг окажется 3 учебника и 2 сборника.

3. Шесть рукописей случайно раскладывают по пяти папкам. Какова вероятность того, что ровно одна папка останется пустой?

Достарыңызбен бөлісу:




©g.engime.org 2025
әкімшілігінің қараңыз

    Басты бет
рсетілетін қызмет
халықаралық қаржы
Астана халықаралық
қызмет регламенті
бекіту туралы
туралы ережені
орталығы туралы
субсидиялау мемлекеттік
кеңес туралы
ніндегі кеңес
орталығын басқару
қаржы орталығын
қаржы орталығы
құрамын бекіту
неркәсіптік кешен
міндетті құпия
болуына ерікті
тексерілу мемлекеттік
медициналық тексерілу
құпия медициналық
ерікті анонимді
Бастауыш тәлім
қатысуға жолдамалар
қызметшілері арасындағы
академиялық демалыс
алушыларға академиялық
білім алушыларға
ұйымдарында білім
туралы хабарландыру
конкурс туралы
мемлекеттік қызметшілері
мемлекеттік әкімшілік
органдардың мемлекеттік
мемлекеттік органдардың
барлық мемлекеттік
арналған барлық
орналасуға арналған
лауазымына орналасуға
әкімшілік лауазымына
инфекцияның болуына
жәрдемдесудің белсенді
шараларына қатысуға
саласындағы дайындаушы
ленген қосылған
шегінде бюджетке
салығы шегінде
есептелген қосылған
ұйымдарға есептелген
дайындаушы ұйымдарға
кешен саласындағы
сомасын субсидиялау