Интервалдың оңтайлы шамасы Стерджесстің формуласымен анықталады



жүктеу 377,91 Kb.
Дата19.01.2022
өлшемі377,91 Kb.
#33573
1 тапсырма


Тақырып 2.
Топтастыру - объектілерді ( заттарды, құбылыстарды, үдерістерді ұғымдар-ды) белгілі бір белгілеріне сәйкес топтарға бөлу жүйесі.,

Статистикалық қатар сапалық ортақтыққа ие біртекті бірліктерден тұратын мұндай деректердің жиынтығы

Статистикалық жиынтықты құрайтын көрсеткіштер шамасы бойынша өзгереді (вариацияланады). Сондықтан олардың мәндері варианттар (х1, х2,…хn) деп аталады, ал барлық жиынтығы- вариациялық қатар.

Салыстырмалы жиілік тәжірибенің қандай үлесі берілген оқиғаның орындалуымен аяқталғанын көрсетеді. Абсолютті жиілікті тәжірибе санына бөлу арқылы салыстырмалы жиілікті анықтауға болады. Кейде салыстырмалы жиілікті пайызбен өлшейді.

Вариациялық қатарды интервалды қатар түрінде берген ыңғайлы, онда жиіліктер жеке мәндерге емес, интервалдардың (кластардың) ортасына жатады.

Интервалдың оңтайлы шамасы  Стерджесстің формуласымен анықталады.

Интервалсыз вариациялық қатардың графигін құрғанда абсцисс өсінде класс мәндері, ал ординат өсінде жиілік белгіленеді. Абсцисс өсіндегі перпендикуляр ұзындығы, класстың жиілігіне сәйкес келеді. Перпендикуляр ұзындықтарын түзу сызықтармен жалғау арқылы көпбұрышты геометриялық фигура аламыз. Вариациялық қатарға график құрғанда координациялық өстеріндегі маштапқа үлкен мән беру керек.Вариациялық қисықтың ұзындығы оған 5:8 қатынаста болу керек.Бұл ережелерді сақтамаған жағдайда кері мәнге әкеп соғады.
Стерджес формуласы 


Тапсырма 2.

Очевидно, что перед нами выборочная совокупность объемом   наблюдений (таблица 10*3), и вопрос номер один: какой ряд составлять – дискретный или интервальный? Смотрим на таблицу: среди предложенных цен есть одинаковые, но их разброс довольно велик, и поэтому здесь целесообразно провести интервальное разбиение. К тому же цены могут быть округлёнными.

Начнём с экстремальной ситуации, когда у вас под рукой нет Экселя или другого подходящего программного обеспечения. Только ручка, карандаш, тетрадь и калькулятор.

Тактика действий похожа на исследование дискретного вариационного ряда. Сначала окидываем взглядом предложенные числа и определяем примерный интервал, в который вписываются эти значения. «Навскидку» все значения заключены в пределах от 5 до 11. Далее делим этот интервал на удобные подынтервалы, в данном случае напрашиваются промежутки единичной длины. Записываем их на черновик:


Теперь начинаем вычёркивать числа из исходного списка и записывать их в соответствующие колонки нашей импровизированной таблицы:



После этого находим самое маленькое число в левой колонке и самое большое значение – в правой. Тут даже ничего искать не пришлось, честное слово, не нарочно получилось:)
  ден. ед. – хорошим тоном считается указывать размерность.

Вычислим размах вариации:


 ден. ед. – длина общего интервала, в пределах которого варьируется цена.

Теперь его нужно разбить на частичные интервалы. Сколько интервалов рассмотреть? По умолчанию на этот счёт существует формула Стерджеса: 



, где   – десятичный логарифм* от объёма выборки и   – оптимальное количество интервалов, при этом результат округляют до ближайшего левого целого значения.

* есть на любом более или менее приличном калькуляторе

В нашем случае получаем:
 интервалов.

Следует отметить, что правило Стерджеса носит рекомендательный, но не обязательный характер. Нередко в условии задачи прямо сказано, на какое количество интервалов нужно проводить разбиение (на 4, 5, 6, 10 и т.д.), и тогда следует придерживаться именно этого указания.

Длины частичных интервалов могут быть различны, но в большинстве случаев использует равноинтервальную группировку:
 – длина частичного интервала. В принципе, здесь можно было не округлять и использовать длину 0,96, но удобнее, ясен день, 1.

И коль скоро мы прибавили 0,04, то по 5 частичным интервалам у нас получается «перебор»:  . Посему от самой малой варианты   отмеряем влево 0,1 влево (половину «перебора») и к значению 5,7 начинаем прибавлять по  , получая тем самым частичные интервалы. При этом сразу рассчитываем их середины   (например,  ) – они требуются почти во всех тематических задачах:



– убеждаемся в том, что самая большая варианта   вписалась в последний частичный интервал и отстоит от его правого конца на 0,1.

Далее подсчитываем частоты по каждому интервалу. Для этого в черновой «таблице» обводим значения, попавшие в тот или иной интервал, подсчитываем их количество и вычёркиваем:



Так, значения из 1-го интервала я обвёл овалами (7 штук) и вычеркнул, значения из 2-го интервала – прямоугольниками (11 штук) и вычеркнул и так далее.

Правило: если варианта попадает на «стык» интервалов, то её следует относить в правый интервал. У нас такая варианта встретилась одна:   – и её нужно причислить к интервалу  .

В результате получаем интервальный вариационный ряд, при этом обязательно убеждаемся в том, что ничего не потеряно:  , и, кроме того, рассчитываем относительные частоты   по каждому интервалу, которые уместно округлить до двух знаков после запятой:

Дело за чертежами. Для ИВР чаще всего требуется построить гистограмму.

Гистограмма относительных частот – это фигура, состоящая из прямоугольников, ширина которых равна длинам частичных интервалов, а высота – соответствующим относительным частотам:

При этом вполне допустимо использовать нестандартную шкалу по оси абсцисс, в данном случае я начал нумерацию с четырёх.

Площадь гистограммы равна единице, и это статистический аналог функции плотности распределения непрерывной случайной величины. Построенный чертёж даёт наглядное и весьма точное представление о распределении цен на ботинки по всей генеральной совокупности. Но это при условии, что выборка представительна.

Вместе с гистограммой нередко требуют построить полигон. Без проблем, полигон относительных частот – это ломаная, соединяющая соседние точки  , где   – середины интервалов:

Большим достоинством приведённого решения является тот факт, что многие вычисления здесь устные, а если вы помните, как делить «столбиком», то можно обойтись даже без калькулятора. Вот она где притаилась, смерть Терминатора :) ;)

Автоматизируем решение в Экселе:

И бонус – эмпирическая функция распределения. Она определяется точно так же, как в дискретном случае:



, где   – количество вариант СТРОГО МЕНЬШИХ, чем «икс», который «пробегает» все значения от «минус» до «плюс» бесконечности.

Но вот построить её для интервального ряда намного проще. Находим накопленные относительные частоты:


И строим кусочно-ломаную линию, с промежуточными точками  , где   – правые концы интервалов, а   – относительная частота, которая успела накопиться на всех «пройденных» интервалах:



При этом   если   и   если  .

Напоминаю, что данная функция не убывает, принимает значения из промежутка   и, кроме того, для ИВР она ещё и непрерывна.

Эмпирическая функция распределения является аналогом функции распределения НСВ и приближает теоретическую функцию  , которую теоретически, а иногда и практически можно построить по всей генеральной совокупности.

Помимо перечисленных графиков, вариационные ряды также можно представить с помощью кумуляты и огивы частот либо относительных частот, но в классическом учебном курсе эта дичь редкая, и поэтому о ней буквально пару абзацев:

Кумулята – это ломаная, соединяющая точки:

* либо   – для дискретного вариационного ряда;
 либо   – для интервального вариационного ряда.

*   – накопленные «обычные» частоты

В последнем случае кумулята относительных частот   представляет собой «главный кусок» недавно построенной эмпирической функции распределения.

Огива – это обратная функция по отношению к кумуляте – здесь варианты откладываются по оси ординат, а накопленные частоты либо относительные частоты – по оси абсцисс.

С построением данных линий, думаю, проблем быть не должно, чего не скажешь о другой проблеме. Хорошо, если в вашей задаче всего лишь 20-30-50 вариант, но что делать, если их 100-200 и больше? В моей практике встречались десятки таких задач, и ручной подсчёт здесь уже не торт. Считаю нужным снять небольшое видео:
Выборочная проверка партии чая, поступившего в торговую сеть, дала следующие результаты:

Требуется построить гистограмму и полигон относительных частот, эмпирическую функцию распределения



Проверяем свои навыки работы в Экселе! (исходные числа и краткая инструкция прилагается) И на всякий случай краткое решение для сверки в конце урока.

Что ещё важного по теме? Время от времени встречаются ИВР с открытыми крайними интервалами, например:


В таких случаях, что убийственно логично, интервалы «закрывают». Обычно поступают так: сначала смотрим на средние интервалы и выясняем длину частичного интервала:   км. И для дальнейшего решения можно считать, что крайние интервалы имеют такую же длину: от 140 до 160 и от 200 до 220 км. Тоже логично. Но уже не убийственно:)

Ну вот, пожалуй, и вся практически важная информация по ИВР.

На очереди числовые характеристики вариационных рядов и начнём мы с их центральных характеристик, а именно – Моды, медианы и средней.

Решения и ответы:

Пример 7. Решение: заполним расчётную таблицу


Построим гистограмму и полигон относительных частот:


Построим эмпирическую функцию распределения:



жүктеу 377,91 Kb.

Достарыңызбен бөлісу:




©g.engime.org 2024
әкімшілігінің қараңыз

    Басты бет
рсетілетін қызмет
халықаралық қаржы
Астана халықаралық
қызмет регламенті
бекіту туралы
туралы ережені
орталығы туралы
субсидиялау мемлекеттік
кеңес туралы
ніндегі кеңес
орталығын басқару
қаржы орталығын
қаржы орталығы
құрамын бекіту
неркәсіптік кешен
міндетті құпия
болуына ерікті
тексерілу мемлекеттік
медициналық тексерілу
құпия медициналық
ерікті анонимді
Бастауыш тәлім
қатысуға жолдамалар
қызметшілері арасындағы
академиялық демалыс
алушыларға академиялық
білім алушыларға
ұйымдарында білім
туралы хабарландыру
конкурс туралы
мемлекеттік қызметшілері
мемлекеттік әкімшілік
органдардың мемлекеттік
мемлекеттік органдардың
барлық мемлекеттік
арналған барлық
орналасуға арналған
лауазымына орналасуға
әкімшілік лауазымына
инфекцияның болуына
жәрдемдесудің белсенді
шараларына қатысуға
саласындағы дайындаушы
ленген қосылған
шегінде бюджетке
салығы шегінде
есептелген қосылған
ұйымдарға есептелген
дайындаушы ұйымдарға
кешен саласындағы
сомасын субсидиялау