Қазақстан республикасының білім және ғылым министірлігі



жүктеу 21,8 Mb.
бет122/214
Дата09.01.2018
өлшемі21,8 Mb.
#7265
түріМазмұндама
1   ...   118   119   120   121   122   123   124   125   ...   214
8-практикалық жұмыс.Транспорт желелерiндегi ағындар.Форд-Фалкерсон алгоритмiн пйдаланып, өткiзу мүмкiндiгi C=(c1, c2 ,c3,c14) векторымен берiлген транспорт желiсi үшiн ең үлкен ағынды табыңыз.

Тапсырмалар варианты.

1. С = (12, 37, 8, 5, 18, 9, 10, 57, 6, 27, 11, 42, 6, 28)

2. С = ( 20, 5, 2,19, 31, 7, 19, 4, 2, 8, 3, 2, 5, 21)

3. С = (1, 44, 35, 21, 61, 1, 31, 2, 4, 1, 5, 32, 82,6)

4. С = ( 27, 14, 35, 71, 4, 1, 1, 13, 21, 16,49, 4, 8, 11)

5. С = ( 3, 7, 12, 8, 24, 9, 13, 5, 4, 2, 16, 3, 6 ,28)

6. С = ( 5, 24, 2, 5, 9, 1, 61, 53,22, 3, 1, 61, 2, 51)

7. С = ( 72, 35, 2, 3, 6, 13, 41, 4, 21, 21, 6, 5, 7, 30)

8. С = ( 5, 41, 2, 49, 25, 2, 1, 3, 39, 7, 10, 21, 3, 22)

9. С = ( 6, 23, 32, 6, 9, 12, 41, 5, 24, 6, 8, 6, 9, 10)

10. С = ( 41, 5, 2, 19, 35, 14, 1, 23, 12, 3, 8, 72, 3, 42)

11. С = ( 6, 32, 81, 4, 6, 21, 41, 74, 58, 3, 1, 20, 7, 14);

12. С = ( 51, 4, 52, 9, 5, 2, 11, 3, 42, 6, 9, 22, 8, 73)

13. С = ( 1, 34, 2, 19, 6, 42, 37, 25, 2, 26, 91, 52, 2, 60)

14. С = (6, 34, 21, 81, 2, 7, 31, 6, 19, 4, 2, 2, 1, 23)

15. С = (6, 34, 21, 81, 2, 7, 31, 6, 19, 4, 2, 2, 1, 30)

16. С = ( 7, 3, 2, 19, 7, 12, 52, 7, 2, 9, 9, 31, 12,14)

17. С = ( 5, 41, 23, 1, 7, 27, 42, 92, 6, 9, 33, 55,4, 17 )

18. С = ( 6, 32, 12, 4, 5, 2, 11, 3, 42, 6, 9, 22, 3, 19)

19. С = ( 7, 32, 2, 31, 9, 2, 17, 9, 3, 56,19, 2, 17, 25)

20. С = ( 8, 16, 47, 2, 61, 6, 21, 7, 2, 42, 45, 2, 4,5)

Негізгі әдебиет 1[249-257]

Қосымша әдебиет 19[190-193]

Бақылау сұрақтары:

1. Қандай орграф транспорттық желі деп аталады?

2. Ағын функциясы ның қандай қасиеттері бар?

3. Қандай доға қаныққан деп аталады.?

4. Қандай ағын толық деп аталады.?
Бақылау жұмыстарының тақырыптары мен нұсқалары (4 бақылау жұмысы ).

1 Бақылау жұмысы. Жиындар теориясы. Сәйкестiктер, бейнелеулер, функциялар. А={a,b,c} және B={1,2,3,4} жиындарының арасында Р сәйкестiгi бар. Р-1 сәйкестiгiн табыңыз. Екi сәйкестiктiң де анықталу облысы мен мәндер жиынын табыңыз. Оларды график түрiнде өрнектеңiз. Сәйкестiктердiң қасиетiн зерттеңiз.

Тапсырма рұсқалары

1. P={(a,1),(a,2),(b,3),(c,2),(c,3),(c,4)}

2. P={(а,3), (a,2), (a,4), (b,1), (c,2), (c,4)(c,3)}

3. P={(a,2),(a,4),(b,1),(b,2),(b,4),(c,2),(c,4)}

4. P={(а,2),(a,4), (a,3), (c,1), (c,2), (c,3)}

5. P={(а,2),(a,4), (a,3), (c,1), (c,2), (c,3)}

6. P={(а,3),(b,4), (b,3), (c,1), (c,2), (c,4)}

7. P={(а,2),(a,3), (a,4), (b,1), (b,2), (b,4)}

8. P={(а,1),(a,2), (b,3), (b,4), (c,3), (c,4)}

9. P={(а,2), (a,3), (a,4), (c,3), (c,1), (c,4)}

10. P={(а,1),(a,2), (a,4), (b,2), (b,4), (c,3)}

11. P={(b,1), (b,3), (c,1), (c,2), (c,3), (c,4)}

12. P={(а,2), (a,4), (b,3), (c,1),(c,2)}

13. P={(а,3), (a,2), (b,2), (b,3), (c,1), (c,4)}

14. P={(а,1), (a,3), (a,4), (b,3), (c,1), (c,4)}

15. P={(а,1), (b,3), (c,1), (c,4), (c,3), (c,2)}

16 .P={(а,1), (b,3), (b,1), (b,4), (c,3), (c,2)}

17. P={(а,1), (а,2), (a,4), (b,1), (b,4), (c,3)}

18. P={(а,1), (а,4), (b,2), (b,3), (c,1), (c,4)}

19. P={(а,1), (а,2), (b,2), (b,4), (c,3), (c,2)}

20. P={(a,1), (a,2), (a,4), (c,3), (c,2), (c,4)}

б) Айнымалылардың барлық мүмкiн мәндерiнде мәнi берiлген функциясы үшiн МДҚФ,МКҚФ табыңыз.

Тапсырма варианттары

1. f(x, y, z, t) = (0011100011001100)

2. f(x, y, z, t) = (1011011000110100)

3. f(x, y, z, t) = (1001010011100101)

4. f(x, y, z, t) = (0011011011011010)

5. f(x, y, z, t) = (1001000100101100)

6. f(x, y, z, t) = (1010011001001011)

7. f(x, y, z, t) = (1001100010011100)

8. f(x, y, z, t) = (0100100010011100)

9. f(x, y, z, t) = (1101001110010010)

10. f(x, y, z, t)= (1011001110001010)

11. f(x, y, z, t) = (1110001101010010)

12. f(x, y, z, t) = (1000101001111010)

13. f(x, y, z, t) = (1100101001101000)

14. f(x, y, z, t) = (1010001110010100)

15. f(x, y, z, t) = (0111011010101001)

16. f(x, y, z, t) = (1011101001011001)

17. f(x, y, z, t) = (1100011101001110)

18. f(x, y, z, t) = (1001000011110101)

19. f(x, y, z, t) = (0100110100101011)

20. f(x, y, z, t) = (0110101101000110)



в) Жегалкин алгебрасы. f(x, y, z) функциясы үшiн Жегалкин полиномын табыңыз.

Тапсырма варианттары:



1. f(x, y,z ) = ( x  y)  (y)(x) (z |).

жүктеу 21,8 Mb.

Достарыңызбен бөлісу:
1   ...   118   119   120   121   122   123   124   125   ...   214




©g.engime.org 2024
әкімшілігінің қараңыз

    Басты бет
рсетілетін қызмет
халықаралық қаржы
Астана халықаралық
қызмет регламенті
бекіту туралы
туралы ережені
орталығы туралы
субсидиялау мемлекеттік
кеңес туралы
ніндегі кеңес
орталығын басқару
қаржы орталығын
қаржы орталығы
құрамын бекіту
неркәсіптік кешен
міндетті құпия
болуына ерікті
тексерілу мемлекеттік
медициналық тексерілу
құпия медициналық
ерікті анонимді
Бастауыш тәлім
қатысуға жолдамалар
қызметшілері арасындағы
академиялық демалыс
алушыларға академиялық
білім алушыларға
ұйымдарында білім
туралы хабарландыру
конкурс туралы
мемлекеттік қызметшілері
мемлекеттік әкімшілік
органдардың мемлекеттік
мемлекеттік органдардың
барлық мемлекеттік
арналған барлық
орналасуға арналған
лауазымына орналасуға
әкімшілік лауазымына
инфекцияның болуына
жәрдемдесудің белсенді
шараларына қатысуға
саласындағы дайындаушы
ленген қосылған
шегінде бюджетке
салығы шегінде
есептелген қосылған
ұйымдарға есептелген
дайындаушы ұйымдарға
кешен саласындағы
сомасын субсидиялау