1. кіріспе вектор және векторлық шамалар



жүктеу 143,92 Kb.
бет5/6
Дата09.11.2022
өлшемі143,92 Kb.
#40068
1   2   3   4   5   6
Механика Векторлар және оларға қолданылатын операциялар

Векторды санға көбейту
Анықтама:а ( а1 , а2 ) векторын n санына көбейткенде а мен бағыттас ( егер n > 0 болса) немесе қарама-қарсы бағытталған (егер n < 0 болса ) коллинеар n а = ( n a1 ; n a2 ) векторын аламыз.
Егер векторды 1 санына көбейтсек, тең векторларды аламыз.
Егер векторды −1 санына көбейтсек, қарама -қарсы векторларды аламыз.

Векторды санға скаляр көбейту.
Айталық а (а1 : а2 ) және в ( в1 , в2) векторлары берілсін. Онда а ( а1 : а 2 ) және в( в1 : в2) векторларының скаляр көбейтіндісі деп а 1 в 1 + а2 в2 сандарын айтады.
6

Скаляр көбейтіндінің белгіленуі :


а*в немесе ( а , в) , яғни а*в = а1 в1+ а2 в2 .

Сонымен қатар екі вектордың скаляр көбейтіндісі деп олардың ұзындықтарының сол векторлардың арасындағы бұрыштың косинусына көбейтіндісін айтады.


Есептеу формуласы :
( а, в) = а * в * cosa
Соsа – а мен в векторларының арасындағы бұрышы
Екі вектордың арасындағы бұрыш деп басы бір нүктеде жататын екі вектордың арасындағы бұрышты айтады.Егер векторлардың арасындағы бұрыш 900 болса, ондай векторлар перпендикуляр немесе ортогональды векторлар деп аталады.
Жазықтықтағы векторлардың скаляр көбейтіндісінің төмендегідей қаситттері бар:

  • ( а , в) = ( в, а )

  • ( n , а ,в ) = n ( а ,в ) n- кез келген сан

  • ( а , в +с ) = ( а , в) + (а ,с )

  • a 2 =( а , а ) = / а / 2

Егер вектордардың координаталары белгілі болса: а = ахі +ауі+ аzі
в=вхі + вуі +вzі
онда скаляр көбейтінді мына формуламен есептеледі :
( а ,в ) = ах вх + ау вуz вz

Скаляр көбейтіндінің 4-ші қасиетін ескерсек осы формуладан вектор ұзындығын аламыз:


7

Векторлардың скаляр көбейтіндісі градустық өлшемде:



1. 2.

00 < a < 900 a = 900


a*b > 0 a*b = 0

3. 900 < a< 180 0 a*b <0




Біз векторлардың кез келген санын қоса аламыз, ал терминдердің реті нәтижеге әсер етпейді. Керісінше ақиқат: кез келген вектор екі немесе одан да көп «компоненттерге» ыдырайды; қосқан кезде нәтиже ретінде бастапқы векторды беретін екі немесе одан да көп векторларға бөлінеді.


Скаляр көбейтінді мен векторлардтың көбейтіндісі тең санды айтады, мұндағы мен векторлар арасындағы бұрыш деп аталады.
Егер векторлардың біреуі нөлдік болса бұрышының бемәлімділігіне қарамастан көбейтінді нөлге тең деп аталады. Векторлардың скаляр көбейтіндісінің қасиеттері

Геометриялық түрде алғанда скаляр көбейтінді бір вектордың үзындыңын екінші вектордың біріншісінің бағытына ортогональ проекциясының ұзындығына көбейткенге тең. Кез келген векторының бірлік вектормен скаляр көбейтіндісі векторының сол бірлік векторға ортогональ проекциясы болып табылады.
8

Векторлардың теңдігінің анықтамасының негізінде мынадай тұжырымдар шығады:



  1. векторларды кеңістіктің кез келген нүктесіне көшіруге болады. Сондықтан да аналитикалық геометрияда еркін векторлар қарастырылады.

  2. коллениар векторларды бір түзуге көшіруге болады.

  3. кез келген екі векторды бір жазықтықта жататындай етіп көшіруге болады



жүктеу 143,92 Kb.

Достарыңызбен бөлісу:
1   2   3   4   5   6




©g.engime.org 2024
әкімшілігінің қараңыз

    Басты бет
рсетілетін қызмет
халықаралық қаржы
Астана халықаралық
қызмет регламенті
бекіту туралы
туралы ережені
орталығы туралы
субсидиялау мемлекеттік
кеңес туралы
ніндегі кеңес
орталығын басқару
қаржы орталығын
қаржы орталығы
құрамын бекіту
неркәсіптік кешен
міндетті құпия
болуына ерікті
тексерілу мемлекеттік
медициналық тексерілу
құпия медициналық
ерікті анонимді
Бастауыш тәлім
қатысуға жолдамалар
қызметшілері арасындағы
академиялық демалыс
алушыларға академиялық
білім алушыларға
ұйымдарында білім
туралы хабарландыру
конкурс туралы
мемлекеттік қызметшілері
мемлекеттік әкімшілік
органдардың мемлекеттік
мемлекеттік органдардың
барлық мемлекеттік
арналған барлық
орналасуға арналған
лауазымына орналасуға
әкімшілік лауазымына
инфекцияның болуына
жәрдемдесудің белсенді
шараларына қатысуға
саласындағы дайындаушы
ленген қосылған
шегінде бюджетке
салығы шегінде
есептелген қосылған
ұйымдарға есептелген
дайындаушы ұйымдарға
кешен саласындағы
сомасын субсидиялау