Егер болса, онда:
. (2.129)
Соңғы теңдіктегі полюс О-ның үдеуін белгілейді. (2.129)–теңдік, нүктенің тасымал жылдамдығы e-нің тасымал қозғалыс кезіндегі өзгеру тездігін сипаттайды. Оны тасымал үдеу дейміз.
Зерттеп отырған (2.122)–теңдіктің оң жағында әлі аты аталмаған, екі еселенген векторлық көбейтінді түріндегі бір қосылғыш қалды. Оны с-деп белгілейік:
. (2.130)
(2.130)–формуламен есептелінетін толық үдеудің құраушысын Кориолис деп атайды. Қабыл алынған (2.128), (2.129) (2.130) белгілеулері арқылы (2,122)–теңдікті ықшамдап жазуға болады:
. (2.131)
(2.131)–теңдікті Кориолистің үдеулерді қосу теоремасы деп атаймыз:
Кориолис теоремасы: Нүктенің абсолют үдеуі тасымал, салыстырмалы және Кориолис үдеулерінің геометриялық қосындысына тең болады.
Достарыңызбен бөлісу: |