Импульсные генераторы применяют при исследовании, отладке и настройке радиотехнических устройств; испытаниях импульсных электронных схем; импульсных характеристик полупроводниковых диодов, транзисторов, интегральных схем; при снятии переходных характеристик осциллографов, различной электронной аппаратуры; испытании вычислительных устройств и т. д.
Импульсные генераторы вырабатывают одиночные или периодические импульсы прямоугольной формы различной полярности, амплитуды, длительности, частоты следования.
Генераторы могут выдавать импульсы с регулируемыми параметрами, несвязанными выходами и независимой регулировкой параметров: опорный импульс и импульс, задержанный на определенное время по отношению к опорному.
Наиболее широко применяют генераторы прямоугольных импульсов, вырабатывающие импульсы обеих полярностей со ступенчатой и плавной регулировкой длительности, плавной регулировкой амплитуды и частоты следования.
Принцип действия генератора поясняется схемой, представленной на рис. 3.5. Задающий генератор выдает тактовые импульсы, поступающие на схему внешнего и разового запуска. Работая в автоколебательном режиме, задающий генератор обеспечивает плавноступенчатую регулировку частоты повторения импульсов. В режиме внешнего и разового запуска задающий генератор отключается от схемы внешнего и разового запуска. Сформированный по частоте и амплитуде сигнал со схемы внешнего запуска поступает на схему задержки основного импульса и на схему формирования импульсов синхронизации.
Рисунок 3.5 – Схема импульсного генератора Г5-54
Схема формирования импульсов синхронизации выдает синхроимпульсы обеих полярностей. Через коммутирующий элемент синхроимпульсы поступают на выходное гнездо генератора. Схема задержки основного импульса выдает импульс с регулируемым временным сдвигом, а также обеспечивает режим нулевого временного сдвига основного импульса относительно импульса синхронизации генератора. Импульс с выхода схемы задержки основного импульса запускает схему формирования длительности основных импульсов, которая выдает стартовый и стоповый импульсы с регулируемым временным сдвигом между ними. Поступая на схему выходного формирования и регулировки амплитуды, стартовый импульс определяет начало (фронт) выходного основного импульса, а стоповый - его конец (срез). Со схемы формирования длительности основных импульсов на схему выходного формирователя поступает также импульс срыва, совпадающий во времени со стоповым импульсом и обеспечивающий быстрое восстановление схемы выходного формирователя в исходное состояние. Схема выходного формирователя и регулировки амплитуды обеспечивает генерирование прямоугольных импульсов с максимальной амплитудой, определенной длительностью, частотой повторения на согласованной внешней нагрузке. Выходной импульс может плавно ступенчато регулироваться по амплитуде от Umax до 0,01 Umax Через коммутационный элемент выходной импульс со схемы выходного формирователя поступает или на выходное гнездо 1:1, или на делители, дополнительно ослабляющие амплитуды импульсов в 10 и 100 раз.
Измерение амплитуды выходных импульсов в пределах плавной регулировки осуществляется амплитудным вольтметром. По этой схеме выполнен импульсный генератор Г5-54, вырабатывающий прямоугольные импульсы.
Помимо импульсных генераторов, предназначенных для формирования импульсов прямоугольной формы, промышленность выпускает генераторы сигналов специальной формы, относящиеся к группе Г6. генераторы этого типа вырабатывают набор сигналов специальной формы, в том числе пилообразной, треугольной, ступенчатой и т.п. Часто эти же генераторы вырабатывают много фазный синусоидальный сигнал. Например, генератор Г6-26 выдает набор синусоидальных сигналов с фазами 00, 900, 1800, 2700. В телевизионном генераторе Г6-8 вырабатываются импульсы синусквадратичной формы, с помощью которых оценивается полоса пропускания видеотракта, сигнал ступенчатой формы для оценки нелинейных искажений и др.
К генераторам качающейся частоты (ГКЧ – его устаревшее название свип-генератор) относятся источники гармонических колебаний со специальным (линейным, логарифмическим и т.д.) законом автоматического изменения частоты в пределах заданной полосы качания. Полоса качания находится как разность конечного и начального значений частоты, т.е. . В зависимости от ее значения ГКЧ бывают:
Узкополосными;
Широкополосными;
Комбинированными.
Упрощенная структурная схема ГКЧ представлена на рис. 3.6.
Рисунок 3.6 – Схема генератора качающейся частоты
Генераторы качающейся частоты строятся по прямому методу генерации и методу биений. В диапазоне от десятых и даже сотых долей герц до десятков мегагерц используют функциональные генераторы с электронным управлением частотой. При этом часто таких генераторов можно регулировать, изменяя ток заряда (разряда) емкости интегратора. При наличии преобразователей цифровых кодов сигналы управления исполнительными элементами, возможно дистанционное и программное изменение частоты.
В достаточно широких пределах автоматическое качание частоты без коммутации элементов колебательной системы легко реализуют в низкочастотных генераторах на биениях. При этом в качестве перестраиваемого гетеродина может служить LC-генератор с электронным управлением частотой.
В настоящее время разработаны несколько способов управления частотой высокочастотных LC-генераторов. Практическое применение находит способ перестройки частоты путем изменения величины барьерной емкости p-n-перехода полупроводникового диода-варикапа. Емкость его p-n-перехода полностью или частично включается в цепь колебательного контура генератора. Модулирующее напряжение, воздействуя на диод изменяет его барьерную емкость, а, следовательно, и частоту генерируемых колебаний.
Основными параметрами данных генераторов являются частотные и амплитудные показатели. К первым относят диапазон рабочих частот, полосу качания, длительность автоматического качания частоты, нелинейность ее перестройки и т.д. Ко вторым - уровень выходной мощности (напряженна) при работе на согласованную нагрузку, неравномерность этого уровня при перестройке частоты и прочее.
Достарыңызбен бөлісу: |