128
материалом, на базе которого создавались понятия и методы теории
вероятностей. В рамках этих обстоятельств решения возникавших в теории
вероятностей
задач
сводились
исключительно
к
элементарно
арифметическим и комбинаторным методам.
Серьезные требования со стороны естествознания и общественной
практики (теория ошибок наблюдений, задачи теории стрельбы, проблемы
статистики и т.п.) привели к необходимости дальнейшего развития теории
вероятностей и привлечения более развитого аналитического аппарата.
Особенно значительную роль в этом сыграли Муавр, Лаплас, Гаусс, Пуассон.
С середины XIX столетия и приблизительно до 20-х годов XX столетия
развитие теории вероятностей связано в значительной мере с именами П.Л.
Чебышева, Л.А. Маркова, А.М. Ляпунова. Основное непреходящее значение
их работ состоит в том, что ими было введено и широко использовано
понятие случайной величины. Дальнейшее обоснование теория вероятностей
получила в работах С.Н. Бернштейна, А.Н. Колмогорова, А.Я. Хинчина, Р.
Мизеса и П. Леви. Ими установлены тесные связи между теорией
вероятностей и метрической теорией функций. В эти годы А.Н.
Колмогоровым были сформулированы общепризнанная ныне система аксиом
теории вероятностей (аксиоматика Колмогорова). В тридцатых годах XX
века А.Н. Колмогоровым и А.Я. Хинчиным создана основы теории
стохастических (случайных, вероятностных) процессов, которая ныне стала
одним из основных направлении исследований в теории вероятностей. Связь
теории вероятностей с практикой привела к возникновению и развитию
математической статистики- прикладной математической науки, родственной
теории вероятностей.
Современное развитие теории вероятностей и математической
статистики характеризуется всеобщим подъемом интереса к ним,
расширением круга их практических применений. Неизмеримо растет роль
теории вероятностей и математической статистики в современном
естествознании. Новые теоретические результаты открывают новые
возможности для естественнонаучного использования их методов. В наше
время трудно назвать какую-либо область исследований, где бы не
применялись вероятностно-статистические методы.
Достарыңызбен бөлісу: